
Supporting Newcomers in Software
Development Projects

Doctoral dissertation at the

Department of Engineering,

University of Sannio, Benevento

presented by
Sebastiano Panichella

Under the supervision of:

Prof. Massimiliano Di Penta

and Prof. Gerardo Canfora

PhD Coordinator: Prof. Luigi Glielmo

July 2014

c©Sebastiano Panichella

Acknowledgments

Summarizing more than three years of work and experience is not a trivial task and finding
the right words to express acknowledgements is quite complex. I hope that they do not look
like a set of ritual sentences, while I really feel and mean every single word. In such moments
it is always difficult to find the words to thanks the people that make, in various and different
ways, your life more complete and more interesting.

I think that the life require a professional realization. Working with people that you
like it is a key and important aspect for that. Here at the Università degli Studi del Sannio,
I met the first time the Prof. Massimiliano Di Penta and the Prof. Gerardo Canfora, my
current advisors. They made me feel at home and work (work very hard) it has been easier
because of this climate of familiarity. I feel different after these past three years with them.
I owe my deepest gratitude to both of them during my research work. Thanks Max for
everything (feedbacks and everything else)! Gerardo is professionally flawless and often
his temperament reminds me my father. Thanks for all the advice during these three years!
Special thanks to my examiners, Prof. Giuseppe Di Lucca (Università degli Studi del Sannio),
Prof.ssa Elisabetta Di Nitto (Politecnico di Milano) and Prof. Andrian Marcus (Wayne State
University) for managing to read this dissertation and for their helpful suggestions.

I can not forget that if I’m here I have to thanks the Prof. Andrea De Lucia and the Dr.
Rocco Oliveto, I started to work for research with them (I believe in the best way). Rocco was
the supervisor of my bachelor thesis and Andrea together with Rocco co-advised my master
thesis. I thank them both. My sincere thanks also goes to Prof. Giuliano Antoniol at the École
Polytechnique de Montrèal (Canada) for offering me the summer internship opportunities in
his research group and for supporting me on diverse exciting works. During that internship I
met Venera Arnaoudova, a very good friend, a very good worker and a promising researcher.
I would like to thank Dr. Gabriele Bavota that currently works with me at the University
of Sannio for his professionalism and strong propensity to research. Finally, I would like to

3

offer my thanks to all the people at the University of Sannio that made my PhD experience
unforgettable.

I had the opportunities to mentor two bachelor students, Carmine Vassallo (University of
Sannio) and Stefano Giannantonio (Università degli Studi del Molise). I would like to thank
them for the high dedication and the excellent work performed in their bachelor thesis. I
would like to thank also all the masters and bachelor students involved in the studies that we
performed. I want to like to thanks also Jairo Aponte that worked with me in a work described
in this thesis.

The first person that I remember of my family is my father, that taught me how is impor-
tant to build true relationships and avoid people that do not believe in the importance of the
human relationships. He was right, as always: true relationships makes the life of everyone
special! He is the person who has always believed in me, I will never forget him, because
he is the person who most influenced my life and helped me to find my way. I miss him
so much! In a similar way, my mother encouraged me during all the steps of my life, she
is able to teach me how is important to be brave and take important decisions in very crit-
ical situations. Her sweetness and her modernity together represent something that can be
reached only after a long inner maturation. When I talk with her I think very often that is
very difficult to find people with her honesty, her integrity and her dynamism. I bring with
me the principles that she gave me always and everywhere, because now these are part of me.
Thanks Mum! My brother Annibale is everything for me: my best friend, a good colleague
and in my opinion, a genius in math. Because of him, I can claim that having a twin is one of
the gifts that God has given me. It is completely true that twins have a telepathy when they
talk, we don’t need a lot of words to understand what we want to tell each other. It is like
talking with yourself without talk alone (who doesn’t have a twin is not able to understand
completely this). Special thanks to him for the support, admirable enthusiasms, honesty and
help he always provide me. He was my source of strength when I was weak and vulnerable.
The people who really love you are near you in times of trouble and are able to feel happiness
for you when something good happens in your life. Only few of the people in our life are
like this. He is one of these. Thanks Annibale! My sister is a very dynamic person, I admire
her ability to come out unscathed from any situation. She is a very sweet woman and lives
to help the others. Temperamentally we are very similar and we do not like to take ourselves
too seriously. We like to take more seriously the work and take care of the responsibilities
that we have. This makes us remarkably similar even in the love life. Thanks Lucia for the
wonderful moments together! About my private life, I was convinced that perfect love rela-

tionships don’t exist and moreover, to be honest I was convinced that no one girl would be
right for me. Until I met you Cristiana. I dreamed for a long time of finding true love, the one
that changes everything, what makes so wonderful the life. My life has a meaning now and it
is only thanks to you. You’re my reason for living. I love you! Thanks for existing Cristiana!

Resume

Context: The recent and fast expansion of OSS communities has fostered research on how
open source projects evolve and how their communities interact. Specifically, several research
studies highlight how in OSS projects the inflow of new developers plays an important role
in the longevity and the success of open-source software. Indeed, the longevity of such
projects depend on the successful turnover between new and old developers, because without
replacing members who leave, a community will eventually wither away. However, such
research effort did not generate yet concrete results in support retention and training of project
newcomers.
Aim: The objective of this thesis is (i) to study how newcomers behave during program com-
prehension activities and how they interact with others developers then, (ii) to develop tools
for supporting them during development activities and in the integration in the development
team. Hence, the thesis is composed by two main parts. Specifically, a first part of the the-
sis is aimed at understanding what kind of information can be obtained by analyzing data
from software repositories (e.g., versioning systems) to help newcomers to collaborate with
others developers and support the team work. The second part of the thesis, on the basis of
insights obtained in the previous part, presents recommenders to concretely support project
newcomers.
Method: we analyze unstructured developers’ discussions—e.g., recorded in mailing lists,
issue trackers, or chat—to extract the social links between developers, and we look at their
code changes in the versioning system. Our purpose is to investigate how collaboration links
(and recommendations generated from these links) vary and complement each other when
they are identified through different communication channels. Moreover, we analyze navi-
gation patterns among software documents to help newcomers to navigate software artifacts
properly, and how developers summarize software artifacts through keywords. Finally, to
support newcomers in their activities, we propose recommenders to (i) suggest mentors and
(ii) to mine source code descriptions from discussion forums.
Results: The analysis of software repositories reveals the usefulness of mailing lists and

7

issue trackers in identifying developers coordinators in OSS projects. Furthermore, when
analyzing how developers browse software artifacts during maintenance tasks we discovered
that while more experienced developers follow an “integrated” approach while browsing soft-
ware artifacts, junior developers might not exploit all the available documentation. We also
found that the code summaries developers produced reflect high-frequency words or words
part of topics having a high frequency. When evaluating the mentor recommender, we found
that it is able to achieve a precision of about 75% or above, and that mailing lists and discus-
sion forums represent a precious source of information for re-documenting source code and
aid program comprehension.
Conclusions: In this thesis we investigated problems arising when newcomers join software
projects, and possible solutions to support them. After a deep analysis of software reposito-
ries we found that it is possible to support the newcomer training with various recommenders.
Among the many contributions of this thesis, we support the first newcomers training stage
with the suggestion of appropriate mentors; then, we help newcomers during maintenance
activities improving their program comprehension with the generation of high quality source
code summaries or identifying descriptions in natural language (mined from developers’ dis-
cussion) describing source code elements. For future work, we plan to improve the proposed
recommenders and to integrate other kind of recommenders that can improve the newcomers
training.

List of Publications

List of the Journal Publications of the candidate.

[1] G. Canfora, A. De Lucia, M. Di Penta, R. Oliveto, A, Panichella, S. Panichella. Defect
Prediction as a Multi-Objective Optimization Problem. Actually considered with
Major revision in Software Testing, Verification and Reliability (STVR) 2014
doi:10.1109/ICST.2013.38.

[2] G. Bavota, G. Canfora, M. Di Penta, R. Oliveto, S. Panichella. How the Apache Com-
munity Upgrades Dependencies: An Evolutionary Study. Submitted to Empirical
Software Engineering (EMSE) 2014.
doi:10.1007/s10664-014-9325-9.

[3] A. De Lucia, M. Di Penta, R. Oliveto, A. Panichella, S. Panichella. Labeling Source
Code with Information Retrieval Methods: An Empirical Study. Empirical Soft-
ware Engineering (EMSE), pp. 1−38, 2013.
doi:10.1007/s10664-013-9285-5

[4] G. Capobianco, A. De Lucia, R. Oliveto, A. Panichella, S. Panichella. Improving IR-
based traceability recovery via noun-based indexing of software artifacts. Journal
of Software: Evolution and Process (JSE), vol. 25, no. 7, pp. 743−762, 2012.
doi:10.1002/smr.1564

[5] A. De Lucia, M. Di Penta, R. Oliveto, A. Panichella, S. Panichella. Applying a Smooth-
ing Filter to Improve IR-based Traceability Recovery Processes: An Empirical
Investigation. Information and Software Technology (INFSOF), vol. 55, no. 4, pp.
741−754, 2012.
doi:10.1016/j.infsof.2012.08.002

9

List of the Conference Publications of the candidate (full papers).

[6] S. Panichella, G. Bavota, M. Di Penta, G. Canfora, G. Antoniol. How Developers’ Col-
laborations Identified from Different Sources Tell us About Code Changes.. In:
Proceedings of the 30th International Conference on Software Maintenance and Evo-
lution (ICSME 2014). Victoria, Canada.

[7] S. Panichella, G. Canfora, M. Di Penta, R. Oliveto. How the Evolution of Emerging
Collaborations Relates to Code Changes: an Empirical Study. In: Proceedings
of the 36th International Conference on Program Comprehension (ICPC 2014), pp.
177−188. Hyderabad, India.

[8] G. Bavota, G. Canfora, M. Di Penta, R. Oliveto, S. Panichella. An Empirical Inves-
tigation on Documentation Usage Patterns in Maintenance Tasks. In: Proceed-
ings of the 29th International Conference on Software Maintenance (ICSM 2013), pp.
210−219. Eindhoven, Netherlands.

[9] G. Bavota, G. Canfora, M. Di Penta, R. Oliveto, S. Panichella. The Evolution of Project
Inter-Dependencies in a Software Ecosystem: the Case of Apache.. In: Proceed-
ings of the 29th International Conference on Software Maintenance (ICSM 2013), pp.
80−89. Eindhoven, Netherlands.

[10] G. Canfora, A. De Lucia, M. Di Penta, R. Oliveto, A. Panichella, S. Panichella. Multi-
Objective Cross-Project Defect Prediction. In: Proceedings of the 7th International
Conference on Software Testing, Verification and Validation (ICST 2013), pp. 52−61.
Luxembourg.

[11] G. Canfora, M. Di Penta, R. Oliveto, S. Panichella. Who is going to Mentor New-
comers in Open Source Projects?. In: Proceedings of the 29th ACM SIGSOFT
International Symposium on Foundations of Software Engineering (FSE 2012), pp.
44:1−44:11. Cary, North Carolina, USA.

[12] A. De Lucia, M. Di Penta, R. Oliveto, A. Panichella, S. Panichella. Using IR Methods
for Labeling Source Code Artifacts: Is It Worthwhile?. In: Proceedings of the
20th IEEE International Conference on Program Comprehension (ICPC 2012), pp.
93−102. Passau, Germany.

[13] S. Panichella, J. Aponte, M. Di Penta, A. Marcus, G. Canfora. Mining source code
descriptions from developer communications. In: Proceedings of the 20th IEEE In-
ternational Conference on Program Comprehension (ICPC 2012), pp. 63−72. Passau,
Germany.

[14] A. De Lucia, M. Di Penta, R. Oliveto, A. Panichella, S. Panichella. Improving IR-
based Traceability Recovery Using Smoothing Filters. In: Proceedings of the 19th
IEEE International Conference on Program Comprehension (ICPC 2011), pp. 21−30.
Kingston, ON, Canada. BEST PAPER AWARD.

Conference Publication of the candidate (short paper).

[15] G. Bavota, S. Panichella, N. Tsantalis, M. Di Penta, R. Oliveto, G. Canfora. Recom-
mending Refactorings based on Team Co-Maintenance Patterns.. In: 29th interna-
tional conference on Automated Software Engineering (ASE 2014). Vasteras, Sweden.

List of the Conference Publications of the candidate (tool demo papers).

[16] C. Vassallo, S. Panichella, G. Canfora, M. Di Penta. CODES: mining sourCe cOde
Descriptions from developErs diScussions. In: Proceedings of the 36th International
Conference on Program Comprehension (ICPC 2014), pp. 106−109. Hyderabad, In-
dia. BEST TOOL AWARD.

[17] G. Canfora, M. Di Penta, S. Giannantonio, R. Oliveto, S. Panichella. YODA: Young
and newcOmer Developer Assistant. In: Proceedings of the 35th International Con-
ference on Software Engineering (ICSE 2013), pp. 1331−1334. San Francisco, CA,
USA.

In the following, for each chapter it is specified the used materials (or part) of the publications
presented in this thesis:

Chapter 2 Publication [6]

Chapter 3 Publication [7]

Chapter 4 Publications [2, 9]

Chapter 5 Publication [8]

Chapter 6 Publications [3, 12]

Chapter 7 Publications [11, 17]

Chapter 8 Publications [13, 16]

Contents

Resume 7

List of publications 9

1 Introduction 19
1.1 Major Contributions . 23

1.1.1 Analysis of Developers’ Social Network to better understand devel-
opers interactions and Team Work 24

1.1.2 Investigate How Developers Browse and Understand Software Arti-
facts to Improve Program Comprehension 25

1.1.3 Suggest Appropriate Mentors to Training Project Newcomers 26
1.2 Thesis Organization . 27

I Analysis of Developers’ Communication 29

2 How Developers’ Social Networks Built on Different Sources Differ 33
2.1 Motivation: the importance of the “social environment” in OSS projects . . . 35
2.2 Empirical Study Design . 36

2.2.1 Research Questions . 37
2.2.2 Data Extraction Process . 37
2.2.3 Analysis Method . 40

2.3 Analysis of the Results . 42
2.3.1 RQ1: To what extent do developers discuss through the different

communication channels? . 42
2.3.2 RQ2: How do the inferred links between developers overlap when

using different sources of information? 44

13

2.3.3 RQ3: What do the four different sources of information tell in terms
of social network metric? . 47

2.4 Threats to Validity . 50

2.5 Related Work . 51

2.6 Summary . 54

3 Evolution of Emerging Collaborations and its Relation with Code Changes 55
3.1 Motivation: how project evolves and emerging teams re-organize themselves? 57

3.2 Study Definition and Planning . 59

3.2.1 Research Questions . 60

3.2.2 Data Extraction Process . 60

3.2.3 Analysis Method . 65

3.3 Analysis of the Results . 66

3.3.1 RQ1: How do emerging collaborations change across software re-
leases? . 67

3.3.2 RQ2: How does the evolution of emerging collaboration relate to the
cohesiveness of files changed by emerging teams? 71

3.4 Threats to Validity . 74

3.5 Related Work . 75

3.6 Summary . 76

4 How Developer Communications are Used to Support Third-Party Libraries 79
4.1 Motivation: analysis of developers collaborations and its impact/relation on

projects dependencies . 81

4.2 Study Definition and Planning . 82

4.2.1 Research Questions . 83

4.2.2 Data Extraction and Analysis . 83

4.3 Analysis of the Results . 89

4.3.1 RQ1: How does the Apache ecosystem evolve? 90

4.3.2 RQ2: What is the relation between sub-projects developers overlap
and sub-projects dependencies? . 95

4.3.3 RQ3: How are dependencies discussed between developers? 96

4.4 Threats to Validity . 100

4.5 Related work . 102

4.5.1 Analysis of Software Ecosystems 102

4.6 Summary . 105

II How Developers Browse and Understand Software Artifacts 107

5 An Empirical Investigation on Documentation Usage Patterns in Maintenance
Tasks 111
5.1 Motivation: help newcomers to properly navigate documentation during main-

tenance activity . 114

5.2 Study Definition and Planning . 115

5.2.1 Context Selection . 115

5.2.2 Research Questions . 116

5.2.3 Study Procedure and Material . 116

5.2.4 Data Collection . 118

5.2.5 Analysis Method . 119

5.3 Analysis of the Results . 121

5.3.1 RQ1: How much time did participants spend on different kinds of
artifacts? . 122

5.3.2 RQ2: How do participants navigate different kinds of artifacts to
identify code to be changed during the evolution task? 126

5.4 Threats to Validity . 132

5.5 Related work . 133

5.5.1 Impact of UML documentation on Maintenance Tasks 133

5.5.2 Studies about Developers’ Behavior during Maintenance Tasks 134

5.6 Summary . 135

6 Labeling Source Code with Information Retrieval Methods 137
6.1 Motivation: support program comprehension with source code summaries . . 139

6.2 Study Definition and Planning . 141

6.2.1 Study Definition . 141

6.2.2 Study Context . 141

6.2.3 Research Questions . 142

6.2.4 Experimental Procedure . 143

6.2.5 Analysis Method . 148

6.3 Analysis of the Results . 151

6.3.1 RQ1: How do the labels provided by automatic techniques overlap
with labels produced by humans? 151

6.3.2 RQ2: What code elements are often used by humans when labeling a
source code artifact? . 157

6.3.3 RQ3: What co-factors influence the effectiveness of automatic source
code labeling techniques? . 158

6.4 Threats to Validity . 164
6.5 Related Work . 166
6.6 Summary . 168

III Recommenders 171

7 Suggest Appropriate Mentors to help Newcomers in Open Source Projects 175
7.1 Motivation: Who is Going to Mentor Newcomers in Open Source Project? . . 179
7.2 How to Identify Mentors . 181

7.2.1 Who could be a good mentor? . 181
7.2.2 Building the project committers’ communication network 183
7.2.3 Recommending mentors . 184

7.3 Empirical Study Definition . 185
7.3.1 Study Procedure . 185
7.3.2 Surveying project developers . 188

7.4 Results . 191
7.4.1 RQ1: How can we identify mentors from the past history of a soft-

ware project? . 191
7.4.2 RQ2: To what extent would it be possible to recommend mentors to

newcomers joining a software project? 196
7.4.3 RQ3: How does mentoring activity affects the future trajectory of a

newcomer when she joins the project? 197
7.5 Discussion . 198

7.5.1 Hints collected from project contributors 198
7.5.2 Examples of cases where YODA worked well and where not 200

7.6 YODA Limitations and Threats to Validity 201
7.7 YODA tool support . 203

7.7.1 Integrating YODA in Eclipse . 203
7.8 Related Work . 207
7.9 Summary . 208

8 Mining Source Code Descriptions from Developer Communications 209
8.1 Motivation: incomplete and unclear code comments need to be re-documented 212
8.2 Mining Method Descriptions from Communications 214

8.2.1 Step 1: Downloading emails and tracing them onto classes 214
8.2.2 Step 2: Extracting paragraphs . 215
8.2.3 Step 3: Tracing paragraphs onto methods 215
8.2.4 Step 4: Filtering the paragraphs . 216
8.2.5 Step 5: Computing textual similarities between paragraphs and methods217
8.2.6 Limitations of the proposed approach 218

8.3 Empirical Evaluation . 218
8.3.1 Threshold calibration . 219
8.3.2 Evaluation procedure . 220
8.3.3 Results . 223
8.3.4 Threats to validity . 224

8.4 Qualitative Analysis . 226
8.5 CODES tool: mining sourCe cOde Descriptions from developErs diScussions 230

8.5.1 Overview of the approach and its implementation in Eclipse 231
8.5.2 CODES in action . 234
8.5.3 Performance Evaluation . 235

8.6 Related Work . 236
8.7 Summary . 237

9 Conclusions and Future Work 239
9.1 Summary of Contributions . 239
9.2 Future work . 242
9.3 Replication Packages and Tools . 243

9.3.1 Replication Packages . 243
9.3.2 Tools . 244

References 245

List of figures 267

List of tables 273

17

18

Chapter 1

Introduction

Open-source software (OSS) projects consist of very complex communities, where the par-
ticipants, who are mostly volunteers, are distributed across different geographic locations.
Developers of such OSS communities develop software in a public and collaborative manner
relying on versioning systems. In addition, to make the communication between participants
of a project easier, developers use mailing lists, IRC, and instant messaging, that are widely
used as means of Internet communication between developers. With the main purpose to bug
reporting help, and preserve stability of the software, developers use issue trackers such as
Bugzilla1 and Jira2. Thus, in OSS projects the software is developed, tested, or improved
through public collaboration and distributed with the idea that the output of this process
must be shared with others. Indeed, information about development discussions—as well
as changes of source code—are publicity available as open source resources. However, a
successful OSS project needs an appropriate and formal governance that supports the social-
technical environment and the developers collaboration. For such reasons, development in
OSS projects is often performed relying on services provided by software foundations that
establish governance and structure of teams (in this way developers can align their work
contributions with the project). Specifically, OSS foundations establish, first of all, a more
effective way to structure projects; after that, it establish the quality criteria that the software
must to comply to ensure the software usability, maintainability, portability and efficiency.
In addition, a OSS foundation ensures the software quality by promoting the meritocracy
and merit of developers who are active contributors to OSS projects. The base idea is that
the community membership is granted only to those who actively/positively participate in a

1http://www.bugzilla.org/
2https://www.atlassian.com/software/jira

19

Introduction

software project(s) in a collaborative manner.
Popular and successful examples of OSS foundations are the Apache Software Founda-

tion3(ASF), the Eclipse Foundation 4, the Linux Foundation5 and the Mozilla Foundation6.
In OSS projects, the inflow of new developers plays an important role in the longevity and
the success of open-source software [18–20]. Thus, the longevity of such projects depend on
the successful turnover between new and old developers. This means that a new generations
of developers is crucial for the survival of a project over the time, because without replacing
members who leave, a community will eventually wither away [21].

Kraut et al. [21] investigate the challenges of dealing with newcomers and point out sev-
eral basic problems that online communities must solve:

• Recruitment: ensure a continuous influx of new developers;

• Selection: OSS communities try to select the newcomers that are more motivated (for
example, the ASF newcomers support page point out that “The more you give the more
you get out”) and who fit well the project needed [22–24];

• Retention: an OSS project needs to reduce the percentage of newcomers that leave
the project because of the socio-technical barriers that they meet when they join the
project;

• Socialization: “teaching” to newcomers how to behave with developers teams.

To ensure the growing of the community an OSS project must to recruit new developers to
support the continuous turnover between new and old developers that are leaving the project.
Several researchers investigated, the reasons behind the newcomers decision to abandon the
project. Indeed, in general, a newcomer joins a software project encounters difficulties and
obstacles when starting her contributions, resulting in a low permanence rate [19, 22, 25].
For example, previous studies show that there is a consequent low permanence rate of junior
developers when they did not receive any answers (any support) from senior developers in
the project (less than 20% of newcomers became long-term contributors) [19, 22]. The ASF
to ensure the supply of newcomers has a newcomer support page7 where are reported (i) a
guide for first engagement with an Apache project (i.e., where a newcomer needs to start) and
(ii) some common newcomer-related FAQ.

3http://www.apache.org/
4www.eclipse.org/
5www.linuxfoundation.org/
6www.mozilla.org
7https://community.apache.org/newcomers/

20

Figure 1.1: Newcomer Training Process: three high level phases.

When a newcomer is recruited, she needs a proper training to develop the skills and ex-
perience needed to work actively and autonomously in the project. There are various aspects
that characterize a proper newcomers training: (i) project environment, (ii) newcomers ex-
pertise and known technologies, (iii) source code and documentation quality. Hence, some
of them depend closely on the characteristics of the new developer, such as the “motivation”
and the proneness to have bright ideas, while others aspects are, intrinsically, part of the new-
comer training process [22]. Thus, it is possible try to support/improve the training process
to help newcomers that are joining the project.

Figure 1.1 depicts the phases that characterize the newcomer training process [20, 22]:
after a (i) mentoring activity, the newcomer (ii) perform development tasks benefited from
the team collaboration. Specifically, the mentoring activity by experienced developers repre-
sents the initial part of the training process in which a newcomer is helped by mentors in OSS

21

Introduction

project (in a formal Mentoring Programs and education) to acquire the technical and organi-
zational information relevant for the project. Once the newcomer gained knowledge about the
project organization, she needs to perform maintenance/development tasks. Clearly, gaining
familiarity with the social environment to work properly with more experienced developers
can help the newcomer to perform in the right way development activities. All of these phases
are very interlinked and are important stages for a complete newcomer recruitment.

Past studies suggest that newcomers ties to the OSS communities are pretty fragile [18–
22]. As a result, a community needs to help newcomers to become part of the community
thus, have more robust ties to the community or learn how the group operates. In such context,
Dagenais et al. [25] studied, by surveying 18 IBM developers, what happens when someone
moves into a new “project landscape”, making for her necessary to get acquainted with the
new environment. Among the factors they found important, it is worthwhile to mention the
need for early practicing, the availability of feedback for their work, and the need for getting
initial guidance. Such studies confirm the importance of a mentoring activity for newcomers
[19, 22, 25] to avoid problems/barriers that affect the newcomers participation. However,
nothing concrete was proposed to help newcomers in this first stage of the newcomer training
(Figure 1.1). For these reasons, this thesis investigates, as first contribution, the possibility to
build a recommender able to suggest appropriate mentors to train project newcomers (Section
1.1 describes more in detail our contribution in this newcomer training phase).

Once newcomers are trained by appropriate mentors, they would gradually starts to com-
mit changes in the source code repository. Thus, they want to gain familiarity with source
code and the related documentation with the purpose to apply development/maintenance tasks
(second phase in Figure 1.1). In such context program comprehension is preliminary to
each development/maintenance activity. However, program comprehension is a very effort
consuming task (especially in large projects), because very often, the source code lacks of
comments that adequately describe its responsibility. Thus, this thesis, investigates the pos-
sibilities to build high quality summaries of source code elements to help new developers
in program comprehension (Section 1.1 describes more in detail this contribution of the the-
sis). However, very often, source code documentation is scarce, incomplete, or out of date
and this means that source code summaries (alone) are not sufficient to understand source
code elements behavioral and responsibilities. We conjecture that in mailing lists and issue
trackers discussions, developers discuss about code elements and explain their behavior and
responsibilities. For this reason, in this thesis we also try to improve program comprehension
and existing documentation by mining source code descriptions from developer’s commu-
nication (Section 1.1 describe more in detail this contribution of the thesis).

Last but not the least, developers teams needs to make the newcomer familiar with the

22

1.1. Major Contributions

environment and the project organization and “teaching” him/her how to behave with de-
velopers teams. However, dynamics are different in open source projects [26], that involve
developers spread across the world and working in different time zones, often communicating
using electronic means of communication, such as mailing lists. In essence, developers par-
ticipating in open source projects are not staffed into teams by project managers. Moreover,
the way they collaborate depends on the structure of the open source project. In such context,
for a newcomer that arrived in a software project, gaining information about these socio-
technical dynamics can play an important role in his/her permanence. Thus, OSS projects
should carefully, help newcomers in understanding the dynamics of the social environment
and the developer teams interaction to create the conditions where newcomers will be able
to produce innovation in the team they enter. Traditional communication channels, like issue
trackers and mailing lists are useful sources to extract relevant facts from the “social environ-
ment” of the project. For example, Developers’ Social Network (DSN) mined from mailing
lists can be analyzed to compute metrics to suggest the more active and more appropriate
developers for the newcomers recuitment [27] while IRC chat can be useful to have on-line
meeting and organize the work [28]. For such reason, in this thesis we focus our attention on
the analysis of developers discussions in form of mailing lists, issue trackers and IRC chat
with the aim to understand what kind of information can be extracted to support team work.
Specifically, we investigate the evolution of DSN and its impact on software structure.
In summary, when a newcomer joins a project, she has to be trained from many different
points of view: project architecture and implementation details, development guidelines, and
organizational aspects. This first important stage of a newcomer is called training phase. This
first stage is very important because once a newcomer has been trained, she can continue to
work autonomously in the project. A newcomer would likely first start participating to discus-
sion actively and then would gradually starts to commit changes in the source code repository.
For these reasons, this thesis investigates and proposes various solutions/suggestions to help
newcomers in both training and implementation phases. Such contributions are described
more in detail in the Section 1.1.

1.1 Major Contributions

This section presents the research contributions of this thesis derived from the analysis of the
research problems briefly described in the previous section. Specifically, we try to support
newcomers during their recruitment analyzing developers communications in form of mail-
ing lists, issue trackers and IRC chat with the aim to understand what kind of information
can be extracted to support team work; (ii) investigating how developers browse and use soft-

23

Introduction

ware artifacts to improve program comprehension; (iii) suggesting appropriate mentors to
help newcomers during the training. As depicted in Figure 1.1, a complete newcomer train-
ing starts with a mentoring support by senior developers. Once, the newcomer is trained
by a mentor(s) she continues with early maintenance/development tasks. While the new-
comer applies development activities, they also improve their familiarity about the “social
environment” to gain advantages from the team collaboration.

1.1.1 Analysis of Developers’ Social Network to better understand de-
velopers interactions and Team Work

This section discusses the research contributions of this thesis derived from the analysis of
DSN mined on different sources of information such as mailing lists, issue trackers, IRC
chat, and versioning systems. The conjecture is that a newcomer by an accurate analysis of
such communication channels can gain very important information about the “social project
environment” helpful to support team work.

Once a newcomer has been trained by a proper mentor(s), she needs to gain information
about the “social environment” to continue to work easily and autonomously in the project.
Part of the knowledge can be gained asking information to mentors of the project. How-
ever, information gained from such mentors is sometimes insufficient because mentors in
OSS project have very specific competencies. Hence, a newcomer is interest to ask other
people specific questions that the initial mentor(s) is not able to answer. In other words,
the newcomer needs to socialize with developers teams, “understand” how to behave in the
right ways with developers teams and gain more information. The newcomer has to use
communication channels, such as, issue trackers, mailing lists and IRC chat, to exchange
information. Thus, DSN mined from mailing lists can be useful to identify coordinators in
OSS projects [27]. From the other side, IRC chat can be useful to have on-line meeting
and organize the work [28]. Vice versa, Twitter can be used to give general overview about
the status of the project and the new and emerging technologies used in the project [29, 30].
However, developers of a OSS community tend to use some communication channels more
than others. Also, collaborations identified through co-changes may differ from those iden-
tified through communication channels [31]. We argue that different sources can tell differ-
ent/complementary information about developers’ communication network.

This thesis provides an investigation about the usefulness of different recommendations
based on different communication channels, such as mailing lists, issue trackers, or IRC chat.
Specifically, the obtained results suggest the usefulness of some sources to identify coor-
dinators and mentors in software projects, while other sources of information have a very
high level of informational noise to be precise and concise enough in such recommendations.

24

1.1. Major Contributions

Then, relying on such sources, we build DSN with the purpose of analyzing the evolution/re-
organization of teams over the time. We discovered that changes in team structure are re-
flected in cohesive changes occurring in the source codes. This result not only explains the
dynamics of the socio-technical congruence in software projects. Last, but not least, we an-
alyze cross-project developers’ communication networks and find how such communication
is used to support upgrades of Third-Party Libraries(TPL).

1.1.2 Investigate How Developers Browse and Understand Software Ar-
tifacts to Improve Program Comprehension

Once a newcomer has been trained by appropriate mentor(s) and gained enough confidence
with the “social environment”, she is ready to become active from a technical point view,
i.e., commit changes in the code to improve existing features and apply maintenance activity.
Thus, a developer that just joined a project needs to acquire familiarity with the software
system. We have investigated how developers use different sources of information during
a program comprehension task, and, specifically (i) to what extent newcomers use different
kinds of documentation when identifying artifacts to be changed, and (ii) whether they follow
specific navigation patterns among different kinds of artifacts. Results indicate that, although
newcomers spent an high proportion of the available time by focusing on source code, they
browse back and forth between source code and either static (class) or dynamic (sequence)
diagrams. Applying a more deeper analysis that considers the years of experience of the
participants, we discover that more experienced newcomers follow an “integrated” approach
by using different kinds of artifacts. Such information can be seen as a starting point to build
recommenders that help the newcomer to properly navigate the software documentation when
apply maintenance tasks.

We have also investigated how developers “summarize” source code elements through
representative keywords, and carried out an empirical study aimed at investigating to what
extent a source code labeling based on IR techniques would identify relevant words in the
source code, compared to the words a human developer would have selected during a program
comprehension task. Results of such a study show to what extent summaries produced by
developers reflect high-frequency words (or topics) in the source code, and what kinds of
code elements are being used to produce such summaries.

The lack of adequate source code documentation, developers try to infer this knowledge
from external artifacts. We argue that messages exchanged among contributors/developers, in
the form of issue trackers and emails, are a useful source of information to help understand-
ing source code. However, such communications are unstructured and usually not explicitly
meant to describe specific parts of the source code. Developers searching for code descrip-

25

Introduction

tions within communications face the challenge of filtering large amount of data to extract
what pieces of information are important to them. For these reasons, this thesis proposes
an approach to automatically extract method descriptions of Java systems from discussions
in mailing lists and issue trackers discussions. The extracted descriptions represent a useful
source for program comprehension tasks. In addition, these descriptions can be seen as good
candidate descriptions for code re-documentation.

1.1.3 Suggest Appropriate Mentors to Training Project Newcomers

When a newcomer joins a project, she has to be trained from many different points of view,
such as project architecture and implementation details, development guidelines, and orga-
nizational aspects. Inadequate training could likely lead to project delay or failure. Thus, a
proper newcomer training and a good project environment are highly desirable because can
impact the probability of a newcomer to become a long term contributors [19,22,25]. A pre-
vious study by Steinmacher et al. [20] identified 38 barriers that affects the newcomer partic-
ipation, grouped into seven different categories. Among the factors that influence negatively
the permanence of a newcomer in OSS projects, the more important one is represented by the
inadequate answers to their request to help. The Analysis of mailing list discussions high-
lighted that newcomers receive more answers by less experienced developers with respect to
more experienced one. Moreover, Dagenais et al [25] surveyed software projects indicating
that mentoring of project newcomers during their training phase is highly desirable [25]. For
example, the Apache Software Foundation ensures a proper newcomer training applying a
formal training program called Mentoring Program. Specifically, the page of the mentoring
program8 explains formally what a mentor has to do in that company and what a mentee can
expect from her mentor. In that page the Apache Software Foundation asks committers to
cover the role of Mentors for project newcomers. Thus, not all committers are mentors and
senior developers have the free choice to become mentors or not of new developers. We ar-
gue that developers in OSS have some specific characteristics that make them mentors. Some
of them are social/communication skills, technical competencies and knowledge about the
project directives of the company. We believe that mailing lists, issue trackers and versioning
systems are useful sources of information to identify mentors having these socio-technical
skills. Steinmacher et al. [32] in according to our conjecture, claim that it is possible to
recommend mentors is OSS projects relying on data from software repositories. This the-
sis provides an explicit and formal definition of “Mentor” in OSS projects and (stemming
from the considerations of previous studies) presents an approach, named YODA (Young and
newcOmer Developer Assistant) aimed at identifying and recommending mentors in software

8https://community.apache.org/mentoringprogramme.html

26

1.2. Thesis Organization

projects by mining data from mailing lists, issue trackers and versioning systems. Candidate
mentors are identified among experienced developers who actively interact with newcom-
ers. Then, when a newcomer joins the project, YODA recommends her a mentor that among
the available ones, has already discussed topics relevant for the newcomer. Results show
the potential usefulness of YODA as a recommendation system to aid project managers in
supporting newcomers joining a software project.

1.2 Thesis Organization

This thesis is composed of three parts:

• Part I: in this part of the thesis we are interested to understand what kind of infor-
mation can be derived by analyzing data from versioning systems and development
discussions to help newcomers to collaborate with developers and support the team
work. For this reason we analyze unstructured discussions between software develop-
ers, in form of mailing lists, issue trackers or IRC chat to extract the social interactions
between project developers. We also analyze versioning systems to extract important
facts about the code changes applied by experienced developers. Specifically, this part
presents three studies, aimed at (i) identifying the more reliable communication chan-
nels to communicate with more experienced developers that cover important project
roles (e.g., project coordinators); and (ii) investigating the evolution of DSN and its
impact on software structure. Chapter 2 investigates the usefulness of different rec-
ommendations based on different communication channels. Specifically, we report a
study that analyzes DSN and investigates how collaboration links vary and comple-
ment each other when they are identified through data from (i) three different kinds of
communication channels, i.e., mailing lists, issue trackers, and IRC chat logs, and (ii)
changes people performed on the same artifacts within close time frames. Chapter 3
observes how developers contributing to open source projects spontaneously group into
“emerging” teams, reflected by messages exchanged over mailing lists and issue track-
ers. Moreover, the chapter investigates how, when a project evolves, emerging teams
re-organize themselves (e.g., by splitting or merging). Chapter 4 studies the evolution
of the Apache Software Ecosystem, in terms of number of developers, their interactions
and the dependencies between projects and investigates (i) how dependencies between
projects and the developers social links evolve over time when the ecosystem grows;
(ii) how developers discuss the needs and risks of such upgrades.

• Part II: with the main goal to help newcomers in program comprehension task, this

27

Introduction

part of the thesis investigates the information that can be derived analyzing source code
and the interactions between software artifacts. For this reasons we analyze navigation
patterns among use cases, class diagram, sequence diagrams, test cases to help new-
comers to navigate properly software artifacts; then, using Information Retrieval (IR)
methods we generate source code summaries to improve source code comprehension.
Chapter 5 is aimed at investigating (i) to what extent newcomers use different kinds of
documentation when identifying artifacts to be changed, and (ii) whether they follow
specific navigation patterns among different kinds of artifacts. Chapter 6 motivates
and reports an empirical study aimed at extract useful code summaries of source code
artifacts with the aim of facilitating newcomers program comprehension.

• Part III: In this last part of the thesis, we (i) help newcomers during the training phase
suggesting them proper Mentors; (ii) help project newcomers program comprehension,
suggesting them source code descriptions by mining natural language descriptions
extracted from developers communications. Chapter 7 presents an approach, named
YODA (Young and newcOmer Developer Assistant) aimed at identifying and recom-
mending mentors in software projects by mining data from mailing lists, issue trackers
and versioning systems. Chapter 8 presents a recommender that mine messages ex-
changed among contributors/developers, in the form of issue trackers and emails, and
extract useful descriptions, that describe specific source code elements.

28

Part I

Analysis of Developers’
Communication

29

In this part of the thesis we are interested to understand what kind of information can be
obtained by analyzing data from versioning systems and development discussions to support
the newcomer with the team work. For this reason we analyze unstructured data form mailing
lists, issue trackers and IRC chat to extract the social interactions between project developers.
We also analyze versioning systems to extract important facts about the code changes applied
by experienced developers. Hence, this part of the thesis reports three different studies.

The first study, reported in Chapter 2, investigates the usefulness of different communica-
tion channels, i.e., mailing lists, issue trackers, IRC chat, in recommending mentors and co-
ordinators (developers having a high degree in the communication channels) in open source
projects. The results suggest the usefulness of mailing lists and issue trackers in identify-
ing coordinators and mentors in software projects, while other sources of information have
too much informational noise to be precise and concise in this recommendation. This re-
sult suggests that mailing lists and issue trackers are reliable sources of information to mine
developers collaborations and thus, built DSN.

For this reasons, in Chapter 3 we observe how developers contributing to open source
projects spontaneously group into “emerging” teams, reflected by messages exchanged over
mailing lists and issue trackers. We investigate whether, when a project evolves, emerging
teams tend to re-organize themselves (e.g., by splitting or merging) reflecting events within
project such us, releases of new software. Results of a case study show that such evolution of
teams is reflected in cohesive changes in the software structure. Such information can serve
to suggest source code re-modularization actions based on such “social information”.

In Chapter 4 we study the evolution of the Apache (Java) ecosystem, in terms of number
of developers, their interactions and the dependencies between projects and investigate (i)
how dependencies between projects and the developers interactions evolve over time when
the ecosystem grows; (ii) how developers discuss the needs and risks of such upgrades. The
conjecture is that developers manage dependencies between projects relying on developers’
communication channels. We discover that developers discussions are massively character-
ized by dependencies discussion of dependent sub-projects. Such information can be used to
define an approach to avoid changes that could break the dependency with TPL.

31

32

Chapter 2

How Developers’ Social Networks
Built on Different Sources Differ

Contents
2.1 Motivation: the importance of the “social environment” in OSS projects 35

2.2 Empirical Study Design . 36

2.2.1 Research Questions . 37

2.2.2 Data Extraction Process . 37

2.2.3 Analysis Method . 40

2.3 Analysis of the Results . 42

2.3.1 RQ1: To what extent do developers discuss through the different
communication channels? . 42

2.3.2 RQ2: How do the inferred links between developers overlap when
using different sources of information? 44

2.3.3 RQ3: What do the four different sources of information tell in
terms of social network metric? 47

2.4 Threats to Validity . 50

2.5 Related Work . 51

2.6 Summary . 54

33

How Developers’ Social Networks Built on Different Sources Differ

Software developers and, in particular, newcomers in software projects need to become
confident with technical competencies and social skills to be productive and effective in the
project. Thus, a proper newcomer training and a good project environment are highly desir-
able because impact the probability of newcomers to became a long term contributors [22].
The newcomers decision to abandon the project can be influenced by several factors [18,22].
For example, as previous studies shown, there is a consequent low permanence rate of junior
developers when they did not receive any answers (any support) by senior developers in the
project [19, 22].

Developers communication channels, i.e., issue trackers, mailing lists and IRC chat are
used by developers to exchange information about the project status and discuss development
aspects. Thus, such sources are useful to extract relevant facts from the ”social project en-
vironment”. DSN mined from mailing lists can be analyzed to compute metrics to suggest
the more active and more appropriate developers for the newcomers recuitment [27]. IRC
chats that are used by developers to have on-line meeting and organize the work, reports
information about the project status and the project discussions about specific and relevant
development topics [28]. Thus, written communication recorded through channels such as
mailing lists or issue trackers, but also code co-changes, have been used to identify emerging
collaborations in software projects. However, it can often happen that some people tend to
use some communication channels more than others. Also, collaborations identified through
co-changes may differ from those identified through communication channels. Our idea is
that different sources can tell different/complementary stories about DSN, for example, miss
links between developers that are in the realty connected. Indeed, as pointed out by a work of
Guzzi et al. [31], mailing list is only one of the communication channels, in OSS projects, as
it also includes other channels such as the issue repository. For such reasons, in this Chapter,
we report a study that analyze DSN built considering several sources and investigate how col-
laboration links vary and complement each other when they are identified through data from
(i) three different kinds of communication channels, i.e., mailing lists, issue trackers, and
IRC chat logs, and (ii) changes people performed on the same artifacts within a close time
frame. Thus, the key goal of this Chapter is to understand what can be extracted/obtained by
the various sources of information, and what are the commonalities between them. Results of
a study reported in Section 2.3 over six open source projects indicate that the overlap of com-
munication links between the various sources is relatively low and varies between projects.
This means that, the identification of key project roles for project newcomers —e.g., high
degree—lead to different results when using different sources.

34

2.1. Motivation: the importance of the “social environment” in OSS projects

2.1 Motivation: the importance of the “social environment”
in OSS projects

The communication among projects’ members plays a paramount role in any successful soft-
ware project. In such a context, a good ”social environments” for a project newcomer plays an
important role in his/her permanence in the projects. Indeed, team coordination and commu-
nication has always been the crux of people involved in software project management [33].
Notwithstanding the nature of a project (i.e., open source versus industrial/closed source), its
domain, or size, the involved people need to exchange information effectively, minimizing
the communication overhead and making sure they are up to date with the project status.

Analyse, such communication can be useful to identify key roles in DSN. Relevant roles
such as, expert/mentors in open source project that can train project newcomers. However,
people contributing to a project may prefer a particular communication channel. For example,
general discussions about a project’s perspective, software design, or future development
strategies may happen in mailing lists, whereas discussions related to specific features or
to the resolution of bugs occur on issue trackers. Another factor is the size, structure and
general organization of the project. For example, some projects tend to have in the past most
of the discussion over mailing lists, and only in recent years they tend to use issue trackers
much more. Finally, in industrial projects part of the discussion occurs through face-to-face
or phone meetings [34]. Thus, to identify correctly people that have key roles in a project it
is important to select the appropriate ”social sources information” depending on the project
peculiarities.

In recent and past years, (written) communication has been analyzed by several authors
for different purposes. For example, Bird et al. [35] and Hong et al. [36] studied to what
extent emerging teams identified from email and issue tracker communication reflect the
latent structure of software projects. Bettenburg et al. [37] and Kumar et al. [38] studied how
social network metrics could be used for bug prediction purposes. Canfora et al. [11] used
data from mailing lists and issue trackers to recommend mentors.

The studies mentioned above have analyzed projects’ communication by observing one or
two sources of communication. The conjecture we want to investigate is that, by considering
different sources (or their combinations), the view one can have of the collaboration network
between project contributors change.

To this aim, we analyze written communication between developers (i.e., people changing
the code) recorded through mailing lists, issue trackers, IRC chat logs, and code co-changes
(the latter indicates that people got in touch if they modified the same artifacts in a limited
time frame). The overarching goal is to provide evidence that by analyzing a single com-

35

How Developers’ Social Networks Built on Different Sources Differ

Table 2.1: Characteristics of the analyzed projects.

Project URL
Year Observed Size

#Commits
#Comments in #E-mails in #Messages in

Started Period (KNLOC) issue tracker mailing list IRC chat
Apache CXF http://cxf.apache.org 2005 June 2011-June 2013 593–771 4,911 6,016 3,049 305,802
Hibernate http://hibernate.org 2003 June 2011-June 2013 984–1,096 1,805 992 2,423 84,218
Infinispan http://infinispan.org 2009 June 2011-June 2013 146–286 2,482 9,305 3,886 893,780
Apache Lucene http://lucene.apache.org 2000 June 2011-June 2013 198–437 2,957 68,055 10,821 104,901
Samba http://www.samba.org 1996 June 2010-June 2012 1,278–1426 11,151 9,132 9,979 17,591
Weld http://weld.cdi-spec.org 2008 June 2011-June 2013 108–139 1,225 1,996 2,423 98,044
Total – – – – 24,531 96,496 32,581 1,504,336

munication channel one may obtain a misleading portrait of people interaction, and that in
general different combinations of the sources may provide different views of the project’s
interaction.

By analyzing the communications of six open source projects, namely CXF, HIBER-
NATE, INFINISPAN, LUCENE, SAMBA, and WELD we show that (i) not all developers use
all communication sources; (ii) people interacting using a given channel may or may not
communicate through a different channel; (iii) the identification of key project roles—such
as developers with a high communication degree—leads to different results if done over dif-
ferent communication channels.

Section structure: Section 2.2 presents the details of the empirical study design, selected
system, approach adopted to collect and analyze data. Section 2.3 reports empirical findings
and is followed by Section 2.4 where we discuss the threats to validity. Section 2.5 discuss
the related work while the Section 2.6 summaries the results of this study.

2.2 Empirical Study Design

The goal of the study is to analyze developers’ collaborations mined from different sources
of information with the purpose of understanding their commonalities and differences. The
perspective is of researchers interested in studying to what extent using different sources
could produce a different view of how developers interact in a project. When such a view is
used to build different kinds of recommenders—e.g., to suggest mentors—this could produce
different results.

The context of the study consists of data from six open source projects, whose charac-
teristics are summarized in Table 2.1: when the project started, the observed period, code
size in non-commented KLOC (KNLOC), size of data from the four sources of information.
CXF is a framework providing APIs for web service development while HIBERNATE is an
object-relational mapping library for Java. INFINISPAN is a data grid platform written in Java
and designed to be highly scalable. LUCENE is a Java-based indexing and search technology.
SAMBA is a re-implementation of the SMB/CIFS networking protocol mostly written in C.

36

2.2. Empirical Study Design

Finally, WELD is an implementation of the Contexts and Dependency Injection for Java EE.
On the one hand, we have chosen such projects to ensure enough diversity in terms of size
(of the code based, of the developers’ population and of the exchanged messages). On the
other hand, we looked for projects having the availability of data from the four investigated
sources—versioning systems, issue trackers, mailing lists, and IRC logs—for a period of at
least two years; we deemed two years long enough to observe collaborations.

2.2.1 Research Questions

In the context of the study, we formulated the following research questions:

• RQ1: To what extent do developers discuss through the different communication chan-
nels? The conjecture is that some developers may use a limited set of the available
communication channels. For instance, it may happen that only a small “core” team
actually discusses through IRC, while many more may discuss over the issue trackers.

• RQ2: How do the inferred links between developers overlap when using different
sources of information? This research question investigates whether different sources
of information provide a different view of the project social network or, in other words,
of the project’s members interactions.

• RQ3: What do the four different sources of information tell in terms of social network
metric? In this research question we analyze whether the identification of people hav-
ing some particular role in the project, such as developers having a high degree in the
communication change when using different sources of information.

2.2.2 Data Extraction Process

This section describes the data extraction process that we follow with the aim of collecting
the data needed to perform our study.

Step 1: Data from Four Sources of Information

Commits checked in by developers are collected by mining the change log of the version-
ing system hosting the six subject projects. Note that the versioning system adopted for
the analyzed systems, i.e., Git, provides explicit information for authors, other than just for
committers, although in many cases authors and committers match.

Issue trackers are mined with the aim of extracting developers’ discussions carried out
on this communication channel. In particular, for each system we download all issues cre-

37

How Developers’ Social Networks Built on Different Sources Differ

ated in the analyzed time period (see Table 2.1) regardless their type (e.g., bug, new feature,
improvement) and status (e.g., closed, open, resolved). To perform such a task we build two
crawlers for the Bugzilla issue tracker (used by SAMBA) and Jira (used by the other five
projects). For each issue, both crawlers extract (i) the name of the project member posting
the issue, (ii) the issue title, (iii) the issue description, (iv) the posting date, and (v) the com-
ments left by project’s members to the issue, storing for each of them the name, the date, and
the message. In total, we collected 5,173 issues comprising 96,496 comments.

Development mailing lists are downloaded from the Web, either by downloading avail-
able archives (e.g.,SAMBA, HIBERNATE, WELD, INFINISPAN), or by crawling Web-based
mailing list (LUCENE and CXF). Then, emails are parsed to extract, for each message: (i)
the message ID, (ii) the project’s member sending the e-mail (i.e., the from e-mail field), (iii)
the project’s member(s) to which the e-mail was sent (i.e., the to e-mail field), (iv) the ID
of the message being replied, (v) the e-mail subject, (vi) the email timestamp, and (vii) the
message body. In total, 141,345 e-mails have been collected.

IRC chats are collected from the Web. In particular, for each discussion thread (reported
in a separate page of the chat log) we store: (i) the (nick)name of developers taking part in
the discussion, (ii) the thread date, and (iii) the messages exchanged in the thread. In total,
1,504,336 messages have been downloaded.

Step 2: Unifying Project Contributors’ Names

We use an approach similar to the one used by Bird et al. [27] and used in our previous
work [11]. The approach is composed of the following steps:

[1] Normalization: names are converted into lower cases, and special characters, includ-
ing dots “.”, are removed, e.g., John F. Smith becomes john f smith.

[2] Ignore middle names, e.g.,john p Smith corresponds to john smith unless this leads to
an ambiguity.

[3] First name referred with initials only, e.g.,john smith corresponds to j smith, unless
this generates an ambiguity.

[4] Last name only, e.g.,john smith corresponds to smith unless this generates an ambigu-
ity.

[5] Initials only, e.g.,j s correspond to john smith, unless this generates an ambiguity.

[6] User ID-like name: IDs, often used in versioning composed by concatenating first and
last names (or their initials). For example, john f. smith could be referred as johnsmith,
jsmith, or jfsmith. Again, we check if the same ID can be obtained from multiple
persons’ names.

38

2.2. Empirical Study Design

To deal with cases where email addresses are used in the project’s members’ communi-
cation, we use a set of heuristics, mostly derived from the above ones, to associate emails to
names:

[1] Extract name: first, we extract the name from the email address, i.e., anything pre-
ceding the “@” and split it into terms considering special characters as separators.

[2] Map email address to a name: we try to map the name extracted from the email to full
names occurred in other emails. For example, jsmith@google.com is mapped to John
Smith, even if he was previously associated with a completely different email address.

[3] Map multiple email addresses of the same person: we map multiple email addresses
applying—on the name extracted from the email address—the same heuristics defined
for names.

Overall, it is worthwhile to point out that the adopted approach for unifying names and
email is a conservative one, i.e., it performs an unification only when there are no multiple
(ambiguous) possibilities of unification for the same name. Since we have no guarantee that
the aforementioned approach is 100% accurate and complete, we integrated it with a man-
ual analysis performed by two of the authors, aimed at verifying the existing mappings and
adding missing ones. Such an analysis lasted four working days, and helped to fix less than
5% of wrong mappings and to add about 20% of missing ones.

Step 3: Extracting Developers’ Links

Once unified the names, we restrict our attention to commit authors’ only. This is
because we want to focus our attention to discussions occurring between people involved in
code changes only, rather than other people participating to the discussions.

Given two project’s members, Mi and Mj , we identify a link Mi ↔ Mj between them
in the four sources of information by applying the following heuristics:

• Versioning system: Mi and Mj modify the same file during a specific time interval,
fixed in this work to six months. Bear in mind this is not really communication, how-
ever it has been used in some past studies [39,40]. We considered the six months period
as not so short (otherwise it would be unlikely to find links) nor so long that the two
contributions were completely detached.

• Issue tracker: Mi and Mj left a comment to the same issue, Mi left a comment to an
issue created by Mj (or vice versa).

39

How Developers’ Social Networks Built on Different Sources Differ

• Mailing list: Both Mi and Mj sent emails / replied to the same email thread [27].
Emails belonging to the same thread have been identified by looking at the message
ID of the email itself (for the email opening a thread) and the message ID of the email
being replied.

• IRC chat: Mi and Mj take part to the same discussion thread.

2.2.3 Analysis Method

This subsection describes the analyses and statistical procedures used to address the three
research questions formulated in Section 2.2.1.

To address RQ1, we compute and report the overlap (in percentage) of authors that used
the various communication channels.

Similarly, for RQ2, we compute the overlap (in percentage) of links existing between
different authors when considering different sources of information.

Besides such a quantitative analysis of the links, we are also interested to investigate the
nature of the discussions occurring over the different communication channels. Undoubt-
edly, the most suitable way to do this kind of analysis is to rely on grounded theory, as done
by Guzzi et al. [31]. However, This is not feasible when analyzing several sources from six
projects. Instead, we perform two different kinds of analyses. First, we perform a quantitative
analysis, done using topic models. For each project and for each communication channel, we
build a topic model using Latent Dirichlet Allocation (LDA) [41]. LDA allows to fit a gen-
erative probabilistic model from the term occurrences in a corpus of documents. Basically
each document is treated as a probability distribution of topics, in turn being distributions
of words. The corpus for emails and issues consists of message subjects/bug title/short de-
scriptions only (each of them represents a document in the corpus), because the rest of the
message/issue discussion often contains details that would only add noise to the overall topic
characterization. For IRC discussions, we took all messages (each of them is a document),
since they are often very short and because no subject/short title is available in this case. The
corpus is then processed by applying English stop word removal and Snowball stemming,
and then topic models are generated. After, we analyze how topics discussed over the vari-
ous communication channels are similar, by comparing the topic models using the Hellinger
distance [42]. Given two discrete probability distributions P and Q, their Hellinger distance
H(P,Q) is:

H(P,Q) = 1/
√
2

√∑

i=1

k(
√
pi −

√
qi)2

where k is the number of topics of the LDA model. Since the Hellinger distance varies
between 0 and 1, and since we were interested to show the similarity of the discussion be-

40

2.2. Empirical Study Design

tween pairs of communication channels, we convert it into a similarity as follows S(P,Q) =

1 −H(P,Q). The whole topic analysis has been performed using the topicmodels package
of the R statistical environment.

When applying LDA, one needs to calibrate the number of topics k, the smoothing factors
for topic distributions in documents (α) and word distributions in topics (β), and the number
of Gibbs iterations (n) required to generate the topic model. Although we are aware that
LDA can produce sub-optimal results if not properly calibrated [43], in this case we did it
by observing how our results vary by considering a number of topic k ∈ {25, 50, 100, 200}.
For all projects, we did not notice any substantial difference when going beyond 50. For this
reason, we have set k = 50. Similarly, we set α = 0.1, and β = 1/k, and n = 10.

To address RQ3, we use the communication links extracted from the different sources
of information to (i) recommend developers playing particular roles, and (ii) replicate the
results of the study reported by Bird et al. [27]. Specifically, with respect to point (i) we rank
developers using the following metrics:

• Degree: i.e., the number of in-out communication links a developer has within a given
communication channel [44]. The conjecture is that a person taking the leadership in
a discussion would have a high degree. Degree metrics have been computed using
the R package sna. To understand whether high-degree developers identified by the
various communication networks are actually recognized as “important” developers by
the community, we rely on the Ohloh1 Kudos score. A Kudos depends on the level of
appreciation or respect of a developer working for a project has, and it is based on the
judgement of other project members2. Specifically, a member can give Kudos to other
members, by assigning them a score ranging 1 and 10. An example of Kudos ranking
for the project Apache CXF can be found at the URL http://www.ohloh.net/

p/cxf/contributors.

• Mentorship: a project member is a mentor if s/he shows the ability to effectively train
other people, generally newcomers. While the identification of developers with high
degree is quite trivial, to identify mentors we rely on a recommender system described
in the Chapter 7 and represents one of the main contributors of this thesis [11]. This
approach is able to identify, given a newcomer joining the project in a given moment,
the project’s member that has been her/his mentor by taking into account factors like (i)
the communication exchange between the newcomer and each project member, (ii) the
level of sociability (degree) of each project member, and (iii) the difference in seniority
of the newcomer with each project member.

1http://www.ohloh.net
2http://meta.ohloh.net/kudos

41

How Developers’ Social Networks Built on Different Sources Differ

Figure 2.1: Hibernate: network of five developers as it is captured from different sources of information.

Note that the aforementioned degree and mentorship metrics are not Boolean, they rather
indicate to what extent a project member plays (or not) one of the two roles described above.

2.3 Analysis of the Results

This section discusses the results achieved in our study and aimed at addressing the three
research questions formulated in Section 2.2.1.

2.3.1 RQ1: To what extent do developers discuss through the different
communication channels?

Table 2.2 reports (i) the number of developers (i.e., commit authors) contributing to the differ-
ent sources of information; and (ii) the percentage of overlap between the different sources.
In addition, we also considered the union of all communication channels (mails, issues, and
chat). It is important to note that given a source Si indicated on the row and a source Sj
indicated on the column, the overlap of the authors A(Si) participating in Si with the authors
A(Sj) participating in Sj is given by |A(Si) ∩ A(Sj)|/|A(Si)|. For this reason Table 2.2 is
not symmetric.

First, we can notice that a pretty good percentage of commit authors were found in the
communication channels (column cc): such a percentage varies between 52% for WELD

and 90% for SAMBA, with an average value of 75%. The communication channel attracting
the largest percentage of authors varies between projects. For three projects (HIBERNATE,
INFINISPAN, and CXF) the most popular channel is the chat, whereas for the other three
(i.e.,SAMBA, LUCENE and WELD) it is the issue tracker.

In five projects out of six (i.e., all but INFINISPAN), authors mainly use two out of three
communication channels, whereas the third one is only used sporadically. For example, in
Samba the issue tracker and the mails are used by 79% and 71% of the authors respectively,
while only 21% use the chat. There may be many factors, such as the project size, internal
organization and structure, or its age, that may influence the proneness of developers to use
different communication sources. For example, SAMBA is relatively older than other projects

42

2.3. Analysis of the Results

Table 2.2: RQ1: overlap (in percentage) between authors contributing to different sources. cc ≡ issues ∪ mails ∪
chat.

CXF
#authors issues chat mails cc

commits 21 57% 71% 43% 76%
issues 12 92% 58% 100%
chat 15 73% 53% 100%
mails 9 78% 88% 100%
cc 16 75% 94% 56%
Hibernate

#authors issues chat mails cc
commits 77 24% 42% 34% 56%
issues 19 68% 68% 100%
chat 32 41% 59% 100%
mails 26 50% 73% 100%
cc 43 44% 74% 60%
Infinispan

#authors issues chat mails cc
commits 40 73% 78% 75% 90%
issues 29 90% 83% 100%
chat 31 84% 87% 100%
mails 30 80% 90% 100%
cc 36 81% 86% 83%
Lucene

#authors issues chat mails cc
commits 32 78% 53% 31% 84%
issues 25 64% 36% 100%
chat 17 94% 41% 100%
mails 10 90% 70% 100%
cc 27 92% 63% 37%
Samba

#authors issues chat mails cc
commits 101 79% 21% 71% 90%
issues 80 25% 76% 100%
chat 21 95% 86% 100%
mails 72 84% 25% 100%
cc 91 88% 23% 79%
Weld

#authors issues chat mails cc
commits 66 45% 32% 3% 52%
issues 30 56% 0% 100%
chat 21 81% 9% 100%
mails 2 0% 100% 100%
cc 34 88% 62% 5%

(16 years of life, since 1998) and developers used for years mailing lists to communicate.

43

How Developers’ Social Networks Built on Different Sources Differ

Only recently, they also adopted an issue tracker and, very recently, developers began to
systematically use the chat. Indeed, the set of authors that exchange messages over issue
tracker and mailing lists largely overlaps with the (small) set of people using the chat (95%
and 86% respectively).

However, not all old projects have such a behavior. Consider, for example, LUCENE. This
is a relatively old project (2000), however developers mainly rely on chat and issue trackers to
exchange messages and organize their work. This also confirm what Guzzi et al. [31] found
when analyzing its mailing lists. LUCENE, indeed, has differences from SAMBA in terms of
number of authors (32 vs. 101) and domain (it is more a scientific project than a widely-used
utility like SAMBA). In some sense, developers form a sort of “small community” that tend
to gather a lot over the chat.

HIBERNATE is also different from the above projects, this is mainly because developers
began to use IRC just two years after the project started. INFINISPAN is also a young project
(2008), and in this case the use of all communication channels is very balanced: 73% for the
issue tracker, 78% for the chat and 75% for emails. Last, but not least, WELD authors very
rarely used emails during the observed period. That is, developers find more convenient to
directly interact through chat or to discuss specific issues over proper means, i.e., the issue
tracker.

RQ1 Summary: It is unlikely that all developers communicate over all channels,
therefore to properly observe their interaction multiple channels should be consid-
ered. Also, while in the past developers used emails as main communication chan-
nel, nowadays they are massively using chats (more interactive) or issue trackers
(better structured).

2.3.2 RQ2: How do the inferred links between developers overlap when
using different sources of information?

Table 2.3 reports the number of authors’ links found in the different sources of information,
and the overlap (in percentage) between the various sources (plus the union of all commu-
nication channels cc). A link represents a pair of authors that interact within a source. It
can be noticed that the number of links identified by considering commits is relatively low,
i.e., only a subset of the authors worked on the same files in a time window of six months.
In most cases, the sources exhibiting the highest number of links are issue trackers and chat
logs; however this could be partially due to the fact that in this case all people participating
to a discussion are considered linked.

44

2.3. Analysis of the Results

Table 2.3: RQ2: Number of author links found in the different sources of information, and overlap (in percentage)
between them.

CXF
#links commits issues chat mails cc

commits 73 14% 26% 5% 38%
issues 30 33% 40% 13% 100%
chat 85 22% 14% 2% 100%
mails 11 36% 36% 18% 100%
cc 109 26% 28% 78% 10%
Hibernate

#links commits issues chat mails cc
commits 184 3% 1% 12% 21%
issues 19 26% 16% 26% 100%
chat 248 8% 1% 13% 100%
mails 81 28% 6% 41% 100%
cc 307 13% 6% 81% 26%
Infinispan

#links commits issues chat mails cc
commits 193 33% 36% 22% 63%
issues 147 43% 37% 29% 100%
chat 445 16% 12% 19% 100%
mails 165 26% 25% 50% 100%
cc 593 20% 25% 75% 100%
Lucene

#links commits issues chat mails cc
commits 195 19% 11% 4% 27%
issues 140 27% 29% 4% 100%
chat 110 20% 37% 5% 100%
mails 23 30% 26% 22% 100%
cc 222 23% 63% 50% 10%
Samba

#links commits issues chat mails cc
commits 729 16% 2% 13% 27%
issues 360 33% 1% 18% 100%
chat 50 28% 10% 18% 100%
mails 313 30% 21% 3% 100%
cc 647 31% 56% 8% 48%
Weld

#links commits issues chat mails cc
commits 82 5% 16% 0% 18%
issues 24 17% 38% 0% 100%
chat 109 12% 8% 0% 100%
mails 0 0% 0% 0% 0%
cc 124 12% 19% 88% 0%

Links observed in the commits have an overlap with other sources ranging between 0%
(commits vs. emails in WELD) and 36% (commits and chat in INFINISPAN). Clearly, the
former 0% is due to the limited participation of authors in WELD mailing lists as observed in
RQ1. When computing the overlap in the opposite direction (other sources vs. commits), we
can notice relatively high values for issues (43% INFINISPAN, 33% CXF and SAMBA, 27%

45

How Developers’ Social Networks Built on Different Sources Differ

LUCENE, 26% HIBERNATE). If merging all communication channels, the link overlap of
commits with other sources raises up, going from 18% on WELD up to 63% on INFINISPAN.
This highlights the importance of analyzing more than one communication channel when
building developers’ collaboration networks.

As already observed in RQ1, results reported in Table 2.3 also confirm that authors gen-
erally limit their interactions to few communication channels. In CXF, we can notice that
the overlap between chat and mails is very low (2%, whereas the opposite is 18%), while
it raises up to 40% between issues and chat. In HIBERNATE and INFINISPAN the highest
overlap is between mails and chat (41% and 50% respectively). This is interesting because
in principle mails and chat seem to be two very different communication means, and also the
way links are mined is different (point-to-point in emails, all participants in a discussion for
chats). However, it should be noted that both are means to plan project activities, whether
issue trackers are usually adopted to discuss specific issues instead. In LUCENE, both issue
tracker and chat have a limited overlap with mailing lists (4% and 5%, whereas the reverse
overlap is 26% and 22% respectively). Instead, the overlap between chat and issue tracker
is 37% (reverse 29%). The overlap between links in issue tracker and chat is also relatively
high in WELD (38%) where the reverse overlap is however low (8%), that is there are many
links in the chat that do not appear in the issue tracker. Finally, as also mentioned in RQ1,
SAMBA developers are less prone to use the chat, and this explains its limited overlap with
mailing lists and issue tracker.

In summary, by looking at Table 2.3 it appears that different communication channels tell
different stories in terms of developers’ communication. Let us consider, for example, the
subset of five HIBERNATE developers depicted in Figure 2.1. The figure shows five differ-
ent networks built considering the five sources of information considered in the study (i.e.,
versioning system, IRC, mailing lists, issue trackers, and the union of the last three). When
considering only a source of information, some links may be missing: for example Dustin
performs commit with others, but he talks with them only on the chat.

As also noticed by Shihab et al. [28], IRC online meetings are often planned to answer
questions related to common project topics, or for brainstorming. For example, during an
IRC meeting a very active author of HIBERNATE wrote: “is there a better way? dunno like I
said this is brainstorming and I have not given lots of thought to these cases”. Another author
said: “but we also need to create the attributes and values in the entity binding..”. Topics that
are also often discussed on the IRC are related to planning testing activities “however a pure
standalone test suite would make things easier...”. Also, developers discuss how to prioritize
activities on issues and whether or not to open issues on the issue tracker “okay I think it is a
bug and I’m going to create a jira first”.

46

2.3. Analysis of the Results

Table 2.4: Similarity measure of topics extracted from different communication channels.
issues vs. mails issues vs. chat mails vs. chat

CXF 0.86 0.11 0.01
Hibernate 0.11 0.02 0.03
Infinispan 0.07 0.03 0.03
Lucene 0.08 0.3 0.02
Samba 0.06 0.02 0.02
Weld 0.11 0.04 0.03

By applying topics model as described in Section 2.2.3, the words describing the topic
with the highest probability of chats (for HIBERNATE) are test, fix, plan, project, unresolved,
migration, integration, branch. Instead, the topic with the highest probability for the issue
tracker contains fail, error, test, issue, broken, valid, wrong, delete, build, core, while the
emails have test, build, valid, core, api, branch, fail, error, build, documentation, strategies.

If one wants to answer the question “how similar are the topics discussed over different
channels?”, Table 2.4 reports the similarity (computed using the Hellinger distance) of all
channel pairs. One can notice that values in the first column (issues vs. mails) are always
higher than those in the other two columns, where issues and mails are compared with the
chat. Among other cases, one can notice the very high similarity in CXF between issues
and emails (0.86). For this project, we noticed that the top topics for issues and mails share
several words such as test, build, valid, core, fail, error, doc, strategies.. Recently, developers
are using issue trackers more and more as a valid alternative to mailing lists to discuss var-
ious kind of issues, not only related to specific bugs to fix or features to add/improve. Vice
versa, the IRC chat has intrinsically a more interactive nature, and thus it is more suitable to
brainstorming.

RQ2 summary: The overlap of communication links between various sources is
relatively low (generally below 30%-40%) and varies depending on the project.
Therefore, data from multiple channels should be merged to have a better view of
developers’ interactions. The topics being discussed in issues and mails are closer
to each other than those discussed in the IRC chat.

2.3.3 RQ3: What do the four different sources of information tell in
terms of social network metric?

Table 2.5 reports the percentages of overlap between the top five coordinators (authors hav-
ing the highest degree in the communication or co-change with others) and mentors for the
different sources of information. Note that we did not identify mentors from the commits as
this does not make sense. In addition, always in Table 2.5 we also report for each source of

47

How Developers’ Social Networks Built on Different Sources Differ

Table 2.5: RQ3: Percentage of Overlap between Top Five Coordinators and Mentors as Extracted From the Four
Sources of Information.

CXF [Coordinators] [Mentors]
issues chat mails cc kudos chat mails cc

commits 40% 20% 40% 20% 40% - - -
issues 20% 40% 20% 20% 40% 60% 60%
chat 20% 100% 20% 20% 40%
mails 20% 60% 60%
Hibernate [Coordinators] [Mentors]

issues chat mails cc kudos chat mail cc
commits 40% 40% 40% 60% 20% - - -
issues 40% 40% 20% 60% 20% 40% 40%
chat 40% 80% 40% 20% 20%
mails 60% 60% 60%
Infinispan [Coordinators] [Mentors]

issues chat mails cc kudos chat mail cc
commits 80% 40% 80% 80% 40% - - -
issues 40% 80% 80% 40% 20% 60% 60%
chat 40% 60% 0% 20% 20%
mails 80% 60% 100%
Lucene [Coordinators] [Mentors]

issues chat mails cc kudos chat mail cc
commits 40% 0% 20% 80% 60% - - -
issues 20% 0% 60% 40% 40% 20% 60%
chat 0% 20% 20% 20% 40%
mails 20% 60% 40%
Samba [Coordinators] [Mentors]

issues chat mails cc kudos chat mail cc
commits 60% 20% 80% 80% 80% - - -
issues 0% 60% 60% 60% 20% 60% 80%
chat 20% 40% 20% 40% 40%
mails 80% 80% 80%
Weld [Coordinators] [Mentors]

issues chat mails cc kudos chat mail cc
commits 60% 0% 0% 20% 0% - - -
issues 0% 0% 20% 20% 40% 20% 60%
chat 0% 80% 0% 20% 60%
mails 0% 20% 40%

information, the percentages of overlap between the top five high-degree authors and the top
five developers that obtained the highest Kudos scores (column kudos in Table 2.5).

In terms of coordinators, the percentage of overlap between the different sources is quite
low (36%, on average). In 68% of the cases the overlap between the compared pairs of
sources is ≤ 40%, and just in 20% of the cases the overlap is ≥ 80%. Vice versa, when
recommending mentors, the average overlap between all pairs of sources is 41%, in 67% of
cases the overlap is≤ 40%, while just in 9% of cases it is≥ 80%. However, as highlighted by

48

2.3. Analysis of the Results

Table 2.6: RQ3: Hibernate’s Top five Project’s Members: Coordinators and Mentors.
Coordinators
Rank commits issues chat mails cc kudos
1 sebers emmanuel sanne sebers sebers gavin
2 stliu hardy scott sanne sanne sebers
3 lukasz gmorling gail hardy gail emmanuel
4 bmeye bmeye emmanuel emmanuel scott hardy
5 gail sebers sebers stliu stliu erik
Mentors
Rank commits issues chat mails cc
1 - bmeye bein sebers sebers
2 - hardy pmui emmanuel scott
3 - lukasz suppor max sanne
4 - emmanuel adnan hardy hardy
5 - sanne stuartdou sanne stliu

the results of the RQ2 topics (and links) discussed in mail are closer to the topics (and links)
discussed in issue tracker. Thus, ideally, if we focus the attention between these two commu-
nication channels we expect to have an higher overlap in terms of coordinators and mentors.
This result is confirmed in Table 2.5. In particular, the percentage of overlap of the coordi-
nators between mail and issue is 40% on average and the percentage in terms of mentors is
47% on average. Vice versa, the chat obtained the lower overlap of mentors/coordinator with
the other communication channels (it is very often lower than 20%). If we do not consider
the chat, in terms of coordinators, the percentage of overlap between the different sources
increase from 36% to 46% (in average), while in terms of mentors, the percentage of overlap
between the different sources increase from 41% to 47% (in average). Thus, it is clear that
the chat channel identifies a set of mentors/coordinators that are very decoupled with the set
of mentors/coordinators provided by the other communication channel. The overlap of the
top Kudos developers with those having the highest degree highlights such a finding. By
looking Table 2.5, is evident that the lowest overlap between top degree and top Kudos is
obtained by the chat channel, while the highest overlap is achieved by the mail. This means
that, by computing high degree on the network obtained from mails, we are able to identify
developers that have a high reputation in the project.

In summary, recommendations of coordinators and mentors computed using develop-
ers collaboration networks mined from different sources can be quite different. The set of
mentors/high-degree developers identified relying on chat is very decoupled with the set of
mentors and high degree developers identified by the other channels. This analysis also finds
confirmation in the analysis of Kudos.

Table 2.6 reports the top five coordinators and mentors extracted from each source of
information of HIBERNATE. If one is interested in knowing which are the coordinators of the

49

How Developers’ Social Networks Built on Different Sources Differ

HIBERNATE project, she could choose to mine any of the available sources of information,
achieving however different results case by case. Indeed, the project’s author sebers is the
only one retrieved as coordinator in all cases, while substantial differences can be observed
for other authors. An interesting case is related to the HIBERNATE developer sanne, that
is identified as a coordinator when mining chat, mails, or the union of all communication
channels (cc), while he is not in the top five when mining commits (he is a committer, nev-
ertheless) and issues. His Linkedin profile3 mentions that he is one of the project’s members
leading HIBERNATE. However, if for instance one limits the collaboration/communication
analysis to commits and issues, this information would not emerge.

RQ3 summary: Social network studies and recommenders in software engineering
should not limit their information mining to a single sources. However, some social
network metrics extracted from the different sources may have a different interpre-
tation, e.g. high degree on chat does not necessarily correspond to high code change
activity.

2.4 Threats to Validity

Construct validity threats concern the relationship between theory and observation. Such
threats are mainly due to imprecision in the mapping of names used in different sources, and
in how links were identified. As for the unification/mapping of names, as explained in Section
2.2.2 we have used an approach inspired from previous work [11, 27, 45] and complemented
it by a thorough manual validation. However, we cannot exclude possible mistakes. Never-
theless, given the high number of developers involved in the study, it is unlikely that small
deviations will change the essence of our findings. Concerning the identification of links,
we used state-of-the-art approaches to identify links in mailing lists, issue trackers and chats.
However, we are aware that the participation to an issue in issue trackers does not mean com-
municating with everybody involved there, and similarly it is likely that not everybody in a
chat session is really involved in each specific discussion. Finally, we are aware that links
inferred from versioning system may have little value because people working on the same
file might never get in touch. Nevertheless, our aim is to show that links extracted from code
changes or from communication channels, although overlapped, have different meaning and
therefore can be quite different.

Threats to internal validity concern factors that could have influenced our results. Our
study is based on what in our opinion are the most widely used communication channels in
open source projects. Other channels—e.g., microblogging through Twitter—indeed exist.

3http://it.linkedin.com/in/sannegrinovero

50

2.5. Related Work

Consistently with a very recent work by [46] we found that for the analyzed projects that
”Twitter doesn’t allow for long discussions (developers prefer to use other channels for that
purpose)”, thus, it is mainly used for advertisement purposes. Last, but not least, besides all
(written) sources of information one can consider, we are aware that there is still a portion of
the developers’ communication happening by voice, and that are not traceable elsewhere [34].

External validity threats concern the generalization of our results. The study is limited to
six systems and, for consistency and comparison between projects, to the most recent project
years. Although we expect that similar findings will be obtained if other projects are analyzed
we cannot be sure, further, larger studies need to be conducted to generalize and confirm (or
contradict) our findings.

2.5 Related Work

In the following, we discuss related work concerning the analysis of developers collaboration
networks for various purposes in the context of software engineering (SE) studies, and with
the aim of building software engineering recommender. The main aim here is to show—as
also summarized in Table 2.7—that different work used different sources of information.

Previous studies analyzed DSN applying Social Network Analysis (SNA) on data ex-
tracted from Versioning Systems repositories [39,40,47–53]. For example, Xu et al. [52] used
SNA to study the developers community at SourceForge, finding that the obtained developer
network is a scale-free network. Pohl et al. [40] and Linguo et al. [53] showed how social
networks could be used to determine roles in the community of developers belonging to the
a software project. We share with Pohl et al. the approach used to identify relations between
developers from versioning system data (two developers are connected if contributed to the
same file during the same period). Studies by Singh et al. [50] and Lopez et al. [48] observed
how committers networks is small-world network. Moreover, projects where there are small
clusters of developers that discuss with each others are likely to exhibit success [50]. Surian
et al. [51] findings are consistent with those of Singh et al. [50]; that is, the small-world phe-
nomenon also exists in SourceForge, especially when developers in a network are separated,
on average, by approximately 6 hops. More recently, Meneely et al. [49] used two issue
tracking annotations—i.e., solution originator and solution approver—from bug database to
complement the developers network of versioning data. We share with this work the impor-
tance of using multiple sources of information. In a subsequent work, Meneely et al. [39]
empirically showed that SNA metrics represent socio-technical relationships in open source
development projects. This reflects the work done in our RQ3, which however highlights that
such socio-technical relationships may change when using different sources of information.

51

How Developers’ Social Networks Built on Different Sources Differ

Various authors have investigated developers’ collaboration through mailing lists [27, 31,
54–56]. Bird et al. [27] discovered that—in mailing list DSN—few members account for a
large proportion of messages sent and of replies. They also found high correlations between
various social network status metrics and source code development. The latter finding was
also confirmed by Shihab et al. [55]. Bird et al. [35] analyzed the relationship between com-
munications structure and code modularity, and found that sub communities identified using
communication information are related to code collaboration behavior. The heterogeneity of
email content and discussion was investigated by Bacchelli et al. [54] and Guzzi et al. [31].
Bacchelli et al. [54] presented a technique that classifies email lines into five categories (text,
junk, code, patch, and stack trace) and evaluated such approach on a (statistically) significant
amount of emails gathered from mailing lists of four unrelated open source systems. Guzzi
et al. [31] quantitatively and qualitatively analyzed a sample of 506 email threads from the
development mailing list of Apache Lucene. Their study shows that developers participate in
less than 75% of the threads, and that in only about 35% of the threads source code details
are discussed.

Hence, very likely as it was also found in our study, developers also discuss through
other communication channels, including issue trackers and IRC. Indeed, IRC meetings are
increasing in popularity among OSS developers [57]. Elliot et al. [58] reveal how, use IRC
instant messaging streams, persistent IRC logs and mailing lists help not only to build a com-
munity but also resolve conflicts. Shihab et al. [28] analyzed IRC logs and found that (i)
a small and stable number of the participants contribute the majority of messages in meet-
ings, (ii) there are common discussed topics as well as project specific topics. LaToza et
al. [59] surveyed eleven developers with the aim at investigate common practices and their
satisfaction in software development. They discovered several barriers preventing email (and
in general written communication) usage. They found that face-to-face communication have
advantages. Also the found that the use of more interactive communication channels (like
IRC) is more desirable than emails.

While mailing lists were used a lot in the past, nowadays many projects are moving most
of the discussion onto issue trackers, that are used besides the simple discussion of bugs to
be fixed. For this reason, various authors have proposed developers based on issue trackers.
Haythornthwaite [62] found that the set of core developers identified considering interactions
on issue trackers differ from the “formal” lists of contributors published on projects’ Website.
Hong et al. [36] compared the evolution of DSN extracted from issue trackers with evolution
of general social networks (e.g., Facebook or Twitter etc.), finding some commonalities and
differences. Kumar et al. [38] investigated the impact of global social network properties
on the bug fixing process. Their results, suggest that the higher the average degree of a

52

2.5. Related Work

Table 2.7: Studies that analyzed Developers Social Networks.

Source of information Related papers
Mailing lists Bacchelli et al. [54], Bird et al. [27]

Wagstrom et al. [56], Guzzi et al. [31]
Bird et al. [35], Shihab et al. [55]

Issue Trackers Bernardi et al. [60], Crowston et al. [61]
Zhou et al. [22], Haythornthwaite [62]
Hong et al. [36], Kumar et al. [38]
Bettenburg et al. [37]

IRC channel Elliotet al. [58], Shihab et al. [57]
Shihab et al. [28]

Microblogging (e.g., Twitter) Zhao et al. [63], Zhang et al. [64]
Ehrlich et al. [29], Dullemond et al. [65]

Versioning Sistems Lopez et al. [48], Meneely et al. [39]
Capiluppi et al. [47], Pohl et al. [40]
Singh et al. [50], Surian et al. [51]
Xu et al. [52], Linguo et al. [53]

Mailing lists and
Issue Trackers Begel et al. [66]
Issue Trackers and
Versioning Systems Meneely et al. [49]

communication between developers, the lower the average time to fix a bug. Similarly to
Kumar et al. [38], Bettenburg et al. [37] find that the consistency of the communication flow
correlates with fault-proneness. Other works by Crowston et al. [61] and Zhou et al. [22] used
co-occurrence of developers on bug reports as indicators of a social link. Crowston et al. [61]
observed that development teams vary widely in their communications centralization, from
projects completely centered around one developer to projects that are highly decentralized.
With the aim at address the problem of inter-team coordination Begel et al. [66] presented
Codebook, a framework for connecting engineers and their work artifacts together.

Recently, several researchers investigated and evaluated the the role played by commu-
nications in Twitter and more in general, the role played by “microblogging”, in software
development organizations [29, 63–65]. Zhao et al. [63] surveyed 11 microblog participants
to better understand the conversational aspects of Twitter discovering the potential benefits it
brings to informal communication at work. However, as Zhang et al. [64] highlighted, there
is a large variation in the posting activity of various users, and there are barriers in adopting
such new social communication channels. Moreover, Ehrlich et al. [29] showed how differ-
ent are the use of the external/internal microblogs: external microblogs are used for share

53

How Developers’ Social Networks Built on Different Sources Differ

general information; instead, internal microblogs are used to technical assistance and discus-
sion. Finally, Dullemond et al. [65] evaluated microblogging discussions, and found how
(i) sustaining a higher feeling of connectedness with people geographically distributed, (ii)
where “mood-activity environment” helps to obtain information that are traditionally harder
to obtain in a less volatile form. In summary, although there are barriers, microblogging could
likely become another promising communication channel. However, we did not consider it in
our study, because (i) we found that the Twitter accounts of the analyzed projects are mainly
used for advertisements, e.g., of new releases; (i) since we deal with (sometimes large) open
source projects rather than close organizations, it is not feasible to keep track of the Twitter
accounts of all developers (if any).

2.6 Summary

In this study we analyzed developers’ communication over different channels (mailing lists,
issue trackers, IRC chat) and their co-change activities captured from versioning systems.
The study concerned a period of observation of at least two years for six open source projects,
namely CXF, HIBERNATE, INFINISPAN, LUCENE, SAMBA, and WELD. Results of the study
highlighted that (i) not all developers use all communication channels; (ii) people interacting
through a given channel may not necessarily also communicate through other channels; and
(iii) the identification of key project roles—such as developers with a high communication
degree or mentors—leads to different results if done over different communication channels.

In summary, results tell that analyzing developers collaboration/communication through
specific channels would only provide a partial view of the reality. Thus, a newcomer should
relying in more than communication channel, to have a real indication of the social/technical
roles played by a given developer. Therefore, if using specific collaboration/communication
networks for various purposes—e.g., identifying experts—one should be careful as results
may not completely reflect the reality. We find that issue trackers and mailing lists are more
appropriate sources to identify coordinators with respect to the chat.

This is also because different channels are likely to be used for different purposes: is-
sue trackers document bug-fixing activities, but also enhancement and feature requests, that
are often also discussed in development mailing list. A more interactive discussion often
occurs through chats, e.g., with the aim of planning activities such as testing or prioritizing
issues. Finally, one must be aware that some discussions still occur by voice and face-to-face
meetings [34, 59].

54

Chapter 3

Evolution of Emerging
Collaborations and its Relation
with Code Changes

Contents
3.1 Motivation: how project evolves and emerging teams re-organize them-

selves? . 57

3.2 Study Definition and Planning . 59

3.2.1 Research Questions . 60

3.2.2 Data Extraction Process . 60

3.2.3 Analysis Method . 65

3.3 Analysis of the Results . 66

3.3.1 RQ1: How do emerging collaborations change across software
releases? . 67

3.3.2 RQ2: How does the evolution of emerging collaboration relate to
the cohesiveness of files changed by emerging teams? 71

3.4 Threats to Validity . 74

3.5 Related Work . 75

3.6 Summary . 76

55

Evolution of Emerging Collaborations and its Relation with Code Changes

In the previous Chapter we analyzed DSN built considering several sources and inves-
tigated how collaboration links vary and complement each other when they are identified
through data from (i) three different kinds of communication channels, such as, mailing lists,
issue trackers, and IRC chat logs, and (ii) changes people performed on the same artifacts
within a close time frame. The obtained results (a study reported in Section 2.3) over six
open source projects indicate that the overlap of communication links between the various
sources is relatively low and varies between projects. This means that, the identification of
key project roles for project newcomers —e.g., high degree—lead to different results when
using different sources. It is important to note that we focused our attention on the social
interactions between developers of a small projects. However, we don’t know how devel-
opers interactions change when a project is growing in terms of number of developers and
number of sub-projects. When such growing in a OSS project involve an higher number of
dependencies between sub-projects, as well as, between the developers sub-communities, this
evolution of an OSS take the name Software ecosystem.

However, what we do not already observed is how developers contributing to open source
projects and spontaneously group into “emerging” teams, reflected by messages exchanged
over mailing lists, issue trackers and other communication means. Previous studies sug-
gested that such teams somewhat mirror the software modularity. This Chapter empirically
investigates how, when a project evolves, emerging teams re-organize themselves—e.g., by
splitting or merging. We relate the evolution of teams to the files they change, to investigate
whether teams split to work on cohesive groups of files. Results of this study—conducted
on the evolution history of four open source projects, namely Apache HTTPD, Eclipse JDT,
Netbeans, and Samba—provide indications of what happens in the project when teams re-
organize. Specifically, we found that emerging team mergers and splits working on more
cohesive groups of files. Such indications serve to better understand the evolution of a
software project by project newcomer. More important, the observation of how emerging
teams change can serve to suggest software remodularization/re-factoring actions for new-
comers/senior developers that are interested to better restructure the software components.
Specifically, in our previous work [15] we present a technique to suggest refactoring based
on team co-maintenance patterns. If two teams work on the same module (package, class,
method), then the tool can suggest that this module can be refactored based on the activity pat-
terns. We evaluate the approach using five projects from the Android API. Differently from
this work we want to refactor modules identifying teams relying on social links extracted
from mailing lists and issue trackers data.

56

3.1. Motivation: how project evolves and emerging teams re-organize themselves?

3.1 Motivation: how project evolves and emerging teams
re-organize themselves?

The organization of developers into teams is crucial for the success of software projects.
In industrial projects, teams are often defined and staffed by project managers, that group
people based on the needs of a particular task, and on people availability, skills, and attitude
to work together. In open source projects it is still true because developers geographically
distributed around the world organize their work in a similar way, relying often on electronic
communication channels, such as mailing lists, issue trackers, IRC chat (as explained in
Chapter 2).

In such context, for a newcomer that arrived in a software project having information
about these socio-technical dynamics can play an important role in his/her permanence. Dy-
namics are different in open source projects [26], that involve developers spread across the
world and working in different time zones, often communicating using electronic means such
as mailing lists. In essence, developers participating in open source projects are not staffed
into teams by project managers. Moreover, the way they collaborate depends on the structure
of the open source project, i.e., whether the project is of “cathedral” or “bazaar” type [67].
Generally speaking, developers spontaneously group themselves into “emerging teams”, that
can be recognized by observing the developers’ communication network and how developers
change source code files. In the rest of the following sections, we use such a definition of
team.

Bird et al. [68] analyzed social networks and found that there is a causal consequence
between the modularity of a software project and the way developers group into teams. They
also found that developers belonging to the same sub-community share a larger proportion of
files than developers belonging to different sub-communities.

When a software project evolves, the way emerging teams are formed and operate may
change. This is because during its lifetime a project undergoes different kinds of changes,
requiring the contribution of different, and possibly new, people. As pointed out by Hong
et al. [36], emerging teams reorganization often happens in correspondence to new project
releases.

Stemming from the above considerations, this study investigates how emerging teams
evolve in open source software projects as people focus on different technical activities, i.e.,
code-changes. By analyzing how people collaborate through mailing lists and issue trackers,
and what files they modify, we investigate whether emerging teams evolve with the aim of
working on more cohesive groups of files. Figure 3.1 provides an overview of our analyses:
on the one side, we identify emerging teams in different time periods following software

57

Evolution of Emerging Collaborations and its Relation with Code Changes

Developers'
Communication

File_1
File_2

File_3

File_1 File_2File_3
Source Code

Files

Time

Release 1 Release 2

Subsystem 1
Subsystem 1 Subsystem 2

Figure 3.1: Evolution of emerging teams and of their technical activities.

releases, and map teams related to subsequent releases/periods. Then, we analyze what files
these teams change in the versioning system, and analyze how the cohesiveness of such files
changes when teams split or merge.

The study has been conducted on the evolution history—consisting of data from version-
ing systems, mailing lists and issue tracker—of four open source projects, namely Apache
httpd1, Eclipse JDT2, Netbeans3, and Samba4. We considered only, issue trackers an mailing
lists as sources of information because, as observed in Chapter 2, other communication chan-
nels, like the IRC chat, are less precise and reliable in suggesting social connections between
developers.

Results of the study indicate that, when emerging teams merge and split, we observe a
significant increase of the cohesiveness—measured both structurally and semantically—of
files on which such teams work. In other words, developers reorganize themselves in order
to work on more cohesive groups of files.

The contributions of this study can be exploited in different ways. On the one hand,
the natural (re)grouping of people in the project communication might suggest the need to
re-structure the software design and/or source code organization. On the other hand, the ob-
servation of how the project communication evolve with respect to the source code structure

1http://httpd.apache.org
2http://www.eclipse.org/jdt
3https://netbeans.org
4www.samba.org

58

3.2. Study Definition and Planning

could help project leaders to better monitor and understand the project activities, as well as
to provide them recommendations on how and when restaffing project teams. Such approach
can inspire similar analysis being applied in an industrial context.

Structure of the Chapter. Section 3.2 provides the empirical study definition, formulates
the research questions the study is going to address, and details the data extraction and anal-
ysis method. Section 3.3 reports and discusses the empirical study results. Threats to validity
are discussed in Section 3.4. Finally, Section 3.6 summaries the results of this study.

3.2 Study Definition and Planning

The goal of this study is to investigate the evolution over time of emerging teams of devel-
opers in open source software projects. The purpose is to understand how such evolution
relates to the cohesiveness of files people change over time. The perspective of the study
is of researchers interested to observe the relationship between developers’ communication
and activities in software projects. Such observation can be used to devise recommenders for
software project managers.

The context consists of the source code history, mailing lists and issue trackers of four
open source projects, namely Apache httpd, Eclipse JDT, Netbeans, and Samba. Apache
httpd (in the following abbreviated as Apache) is an open-source HTTP server, Eclipse-JDT
and Netbeans are Java Integrated Development Environments (IDE), and Samba a cross-
operating system layer for printer and file sharing. We have chosen these four projects to
have a reasonable variety in terms of size and application domains: two of them, Apache
httpd and Samba, are network applications, while the other two are really the same kind of
system, i.e. Java IDE. The latter choice is also motivated to allow comparing projects that
are pretty similar in terms of features offered. Also, we had to choose projects for which
both mailing lists and issue trackers were available. Table 3.1 reports key information about
the four projects and, above all, of their mailing lists, issue trackers, and versioning systems,
namely project URL, time period analyzed, size range in KLOC, list of considered releases,
number of mailing list contributors (Mc), number of issue tracker contributors (Ic), and
number of authors indicated in the versioning systems (Au). Note that the versioning system
adopted for the analyzed systems, i.e. Git, provides explicit information for authors, other
than just for committers, although in many cases authors and committers match. In addition,
the table reports the intersectionsMc∩Au, Ic∩Au and (Mc∪Ic)∩Au. Note that the latter is
of particular interest for our study, in that it tells us how many authors communicated through
the two communication means considered. In particular, the percentage of the authors that
participated in discussions in mailing lists and/or issue trackers range between 68% and 80%.

59

Evolution of Emerging Collaborations and its Relation with Code Changes

As the work of Guzzi et al. [69] pointed out, sometimes core developers’ participation in
mailing lists is very low. In our cases, it is of less than 36% of authors for Eclipse JDT and
Netbeans. For this reason, we decided to consider in our study both sources of information.

3.2.1 Research Questions

The study aims at addressing the following research questions:

• RQ1: How do emerging collaborations change across software releases? This re-
search question has a merely exploratory nature, and poses the basis for the subsequent
one. It aims at observing how emerging teams evolve, i.e., to what extent these teams
merge, split, and recombine. Also, we analyze the proportion of developers that join
the project, those that are inactive in a given time period, and those leaving the project,
to understand whether different projects exhibit different dynamics in terms of team
reorganization.

• RQ2: How does the evolution of emerging collaboration relate to the cohesiveness
of files changed by emerging teams? This is the core research question of the study,
and aims at investigating whether a team split or merger is reflected by change activity
being done in more (or less) cohesive groups of files. Previous work [70] suggested
that such a structure reflects the system architecture. Such information can provide
multiple indications. If a team works on a set of unrelated files, in some circumstances
it could be useful to split a team into smaller teams working on cohesive files.

As it will be detailed in Section 3.2.2, we measure the cohesiveness of files modified by
emerging teams using both structural and semantic measures, which have been found
to capture different, complementary aspects of software modularity [71].

3.2.2 Data Extraction Process

To address these research questions, we need two data sources: (i) developers’ communi-
cation (extracted from mailing lists and issue trackers), that we use to identify emerging
collaboration teams; and (ii) change history, extracted from versioning systems, that is used
to determine which files developers work on over time. In the following, we detail how such
data sources are used to address the two research questions.

60

3.2. Study Definition and Planning

Table 3.1: Characteristics of the four projects under study.
VARIABLE APACHE HTTPD ECLIPSE JDT NETBEANS SAMBA

Period 09/1998- 01/2002- 01/2001 01/2000-
analyzed 03/2012 12/2012 08/2012 12/2011
Size range (KNLOC) 77-1,550 83-2,082 71-9,746 156-1,416

Releases considered

2.0 3.0 3.4 2.3
2.2.0 3.2 3.6 3.0.20
2.2.4 3.4 5.5 3.0.25

2.2.12 3.6 6.9 3.5.0
2.4.1 4.2 7.2 4.0

Mailing list contribs (Mc) 2,598 127 3,928 3,211
Issue tracker contribs (Ic) 5,727 2977 3,095 4,974
Committers (Au) 87 56 328 122
Mc ∩ Au 64 11 118 69
Ic ∩ Au 6 34 168 78
(Mc ∪ Ic) ∩ Au 70 38 218 96
Emails exchanged byMc ∩ Au 17,650 432 7,424 23,613
Bugs reported/discussed by Ic ∩ Au 5,602 5,656 1,5365 14,262

Step 1: Extracting the communication network

To analyze the evolution of the emerging teams, we build communication graphs using
data from mailing lists and issue trackers as described in Section 2.2.2.

We are interested to study the evolution of teams, therefore we build communication
networks related to different time periods, corresponding to the intervals between two subse-
quent releases. As in some cases releases are frequently issued, analyzing only few months
of communication would not be representative of the emerging groups. Hence, we analyze
the period between one release and the next one such that the time interval between them is of
at least one year. In the following, we refer to rk the network concerning the communication
between release rk and release rk+1.

Step 2: Identifying emerging teams

To identify emerging teams, we apply clustering algorithms on the social networks ex-
tracted in Step 1, using the intensity of the communication between two developers—i.e., the
number of emails exchanged—as an indicator of the connection’s strength.

To cluster developers, it is important to choose a suitable clustering algorithm, and, if the
algorithm requires it, to determine the number of clusters. Previous work [72] used k-means
as clustering algorithm. However, one issue of k-means is that it does not allow one item to
be placed in more than one cluster. However, when identifying emerging teams, it is realistic
to consider that a developer may primarily work for a team, but that she can also contribute to

61

Evolution of Emerging Collaborations and its Relation with Code Changes

other teams. To this aim, we use a fuzzy alternative to k-means, i.e., the fuzzy C-Means [73]
which, other than assigning a developer to a team, also provides the membership score msi,j ,
i.e., the likelihood that a developer di can belong to a team tj . Specifically, we used the
cmeans function of the e1071 package available in the R [74] statistical environment.

After having analyzed the distributions of likelihoods we need to identify which teams
the developer contributes to. To this aim, we define a threshold, named Membership Score
Threshold (MST). If msi,j ≥ MST , then we assume that di contributes to tj , while we
consider the contribution negligible if msi,j < MST . In addition, we distinguish the pri-
mary team of a developer (the one with the highest msi) from the other teams to which she
contributes.

In our study, we analyzed the values of msi,j for all four projects and found that it is
above 0.5 for the primary teams, whereas it is very low (and always < 0.3) for teams where
a developer had an occasional or negligible participation. In conclusion, observation of such
values suggested us to set MST equal to 0.3.

To determine the number of clusters k, we compute the Silhouette coefficient introduced
by Kaufman and Russeeuw [75]. Let us consider a clustering obtained for a given k. For
the observation i (in our case a developer) let a(i) be the average distance to the other points
(developers) in its cluster (the team), and b(i) the average distance to points in the nearest
cluster (a different team). Then the Silhouette statistics is defined as:

s(i) =
b(i)− a(i)

max(a(i), b(i))

For different values of k, we will obtain different values of s(i). Kaufman and Russeeuw
suggested choosing the optimal number of clusters as the value maximizing the average s(i)
over the dataset. In literature, it is assumed that the Silhouette curve knee indicates the ap-
propriate number of clusters [76]. In our study, we obtained k = 10 for Apache httpd and
for Samba, k = 7 for Eclipse JDT and k = 11 for Netbeans. It is important to note that the
different projects obtain different values of k because the average distance between develop-
ers (points) and in a team (cluster), as well as, and the average distance to developers (points)
in the nearest team (cluster) varying between projects. Such values depend from the number
of developers and the density of the DSN built considering the messages exchanged between
the developers. After performing clustering, we discarded singleton groups. For this reason,
in some cases our results can report a number of teams smaller than the k defined above.

Step 3: Mapping teams across different time intervals

After having identified the emerging teams, we compare the teams identified in two sub-

62

3.2. Study Definition and Planning

sequent time intervals rk and rk+1, and try to build a mapping between them. Specifically:

• a team tj of rk splits if two or more teams of rk+1 contain subgroups of tj . We define
a subgroup as a set of at least two developers belonging to a group. On the one hand,
we did not impose a threshold greater than two because, as it will be clearer from
the results, groups are often small. Also, this will allow us to observe how small sub-
communities move. As it will be shown in Section 2.3, this frequently occurs in smaller
projects. On the other hand, we did not consider singletons moving from a group to
another as a case of group splitting.

• vice versa, we detect a merger if subgroups of two teams tj and t′j of rk belong to the
same team in rk+1.

• finally, one team survives between rk and rk+1 if at least one of its subgroups remains
in rk+1 and no other subgroup merges with it.

Step 4: Analyze changes performed by the emerging teams

This steps analyzes to what extent developers belonging to the same emerging team work
on a cohesive set of files. As explained before, we observe such a cohesiveness from both a
structural perspective and conceptual (semantic) perspective.

As a structural measure, we rely on the Modularity Quality (MQ) defined by Mancoridis
et al. [77]. MQ has been widely used in the context of software remodularization, for example
as a fitness function for search-based remodularization algorithms [78].

Formally, MQ is defined as follows:

MQ =

{ 1
k

∑k
i=1Ai − 1

k(k−1)
2

∑k
i,j=1Ei,j if k > 1

A1 if k = 1

where intra-connectivity measurement Ai of cluster i consisting of Ni components and µi
intra-edge dependencies is Ai = µi

N2
i

. Moreover, Ei,j is the inter-connectivity between the

ith and jth clusters. Formally, the inter-connectivity Ei,j between clusters i and j consisting
of Ni and Nj components, respectively, with αi,j inter-edge dependencies is defined as:

Ei,j =

{
0 if i = j

αi,j

2NiNj
if i 6= j

In our context, we compute the MQ for an emerging team by considering the set of files
modified by the team members. As also done in previous studies [78], we assume a corre-
spondence between modules and system directories. That is, Figure3.2 illustrates an example

63

Evolution of Emerging Collaborations and its Relation with Code Changes

Module'1' Module'2'

EMERGING'
TEAM'

MQ =
2
9 + 1

9

2| {z }
Intra-connectivity

�
1
18

2|{z}
Inter-connectivity

= 0.14

Figure 3.2: Modularization Quality (MQ) computation for files modified by an emerging team.

calculation of MQ for an emerging team of three developers, which changed files belonging
to two different modules.

After having computed the MQ, we observe how it changes when teams split and merge
over the observed evolution period.

Note that previous work by Bird et al. [68] measured the cohesiveness of files modified by
an emerging team using activity focus instead of MQ. The activity focus [68] is defined as the
average directory distance between files changed by developers belonging to the same team,
and compared it with the average directory distance of files changed by developers belonging
to different teams. We use MQ because, differently from activity focus, it also accounts for
dependencies between files (besides how they are organized in directories). Nevertheless, we
also checked how activity focus changes when teams split and merge, and found consistent
results with MQ.

As a complement to the MQ, we use the Conceptual Coupling Between Classes (CCBC)
defined by Poshyvanyk et al. [79]. The CCBC is based on the semantic information captured
in the code by comments and identifiers. That is, two classes are conceptually related if
their (domain) semantics are similar, i.e., they have similar responsibilities. The definition
of CCBC requires the introduction of a lower-level measure [79]: the Conceptual Coupling
Between Methods (CCM). To measure CCM, Latent Semantic Indexing (LSI) is used to

64

3.2. Study Definition and Planning

represent each method as a real-valued vector that spans a space defined by the vocabulary
extracted from the code. The conceptual coupling between two methods mi and mj is then
calculated as the cosine of the angle between their corresponding vectors [80]:

CCM(mi,mj) =
−→mi · −→mj

‖−→mi‖ · ‖−→mj‖

where −→mi and −→mj are the vectors corresponding to the methods mi and mj , respectively, and
‖−→x ‖ represents the Euclidean norm of the vector x [80]. Thus, the higher the value of CCM
the higher the similarity between two methods. Clearly, CCM depends on the consistency of
naming used in the source code and comments.

Now we can define the conceptual coupling between two classes ci and cj as:

CCBC(ci, cj) =

∑
mh∈ci

∑
mk∈cj CCM(mh,mk)

|ci| × |cj |

where |ci| (|cj |) is the number of methods in ci (cj). Thus,CCBC(ci, cj) is the average of the
coupling between all unordered pairs of methods from class ci and class cj . The definition of
this measure ensures that CCBC is symmetrical, i.e.,

CCBC(ci, cj) = CCBC(cj , ci).

It is worthwhile to point out that, while for structural modularity we relied on a measure
capturing both cohesion and coupling information (MQ), for semantic modularity we only
relied on coupling. This is because semantic cohesion and coupling measures provide a
similarity indicator, and cannot be directly used to build an index equivalent to MQ, unless
imposing over them some arbitrary thresholds. For this reason, we preferred to just rely on
the CCBC that, as shown in a previous study [71], provides a good indication of software
modularity, sometimes even better than structural measures.

In our study, we tried to verify whether developers teams that split and merge between
two releases re-organize the work in more “semantically” related files. Thus, we compute
the the values of conceptual coupling for an emerging team by considering the set of files
modified by the team members, and then we observe how it changes when teams split and
merge.

3.2.3 Analysis Method

To address RQ1, given two releases rk and rk+1, we report the number and percentage of (i)
teams in rk that survive in rk+1, (ii) teams in rk that split in rk+1, and (iii) mergers occurring

65

Evolution of Emerging Collaborations and its Relation with Code Changes

Table 3.2: Evolution of teams across software releases.
Releases rk Teams rk Teams rk+1 Teams disapp. in rk+1 Teams split from rk to rk+1 Teams merged rk+1 Teams surv. in rk+1 New teams rk+1

Apache 2.0→ 2.2.0 9 10 5 (56%) 1 (11%) 1 (10%) 4 (44%) 2 (20%)
Apache 2.2.0→ 2.2.4 10 9 3 (30%) 2 (20%) 2 (22%) 5 (50%) 1 (11%)
Apache 2.2.4→ 2.2.12 9 8 4 (44%) 2 (22%) 2 (25%) 5 (56%) 1 (20%)
Apache 2.2.12→ 2.4.1 8 8 4 (50%) 0 (0%) 0 (0%) 4 (50%) 0 (0%)

Average - - 45% 13% 18% 50% 13%
Eclipse JDT 3.0→ 3.2 7 7 2 (27%) 1 (14%) 2 (29%) 5 (71%) 1 (14%)
Eclipse JDT 3.2→ 3.4 7 7 3 (43%) 1 (14%) 0 (0%) 4 (57%) 1 (14%)
Eclipse JDT 3.4→ 3.6 7 6 4 (57%) 1 (14%) 1 (17%) 3 (43%) 1 (17%)
Eclipse JDT 3.6→ 4.2 6 6 3 (50%) 1 (17%) 1 (17%) 3 (50%) 1 (17%)

Average - - 45% 15% 16% 55% 16%
Netbeans 2.3→ 3.0.20 11 7 6 (54%) 3 (27%) 5 (83%) 5 (46%) 0 (0%)

Netbeans 3.0.20→ 3.0.25 7 11 1 (14%) 4 (57%) 5 (45%) 6 (86%) 2 (18%)
Netbeans 3.0.25→ 3.5.0 11 10 2 (18%) 4 (36%) 2 (50%) 6 (55%) 0 (0%)

Netbeans 3.5.0→ 4.0 10 10 6 (60%) 2 (20%) 0 (0%) 4 (60%) 2 (20%)
Average - - 37% 35% 45% 62% 10%

Samba 2.3→ 3.0.20 9 9 2 (22%) 5 (56%) 3 (33%) 7 (78%) 1 (11%)
Samba 3.0.20→ 3.0.25 9 10 3 (33%) 1 (11%) 1 (10%) 7 (78%) 1 (10%)
Samba 3.0.25→ 3.5.0 10 9 2 (20%) 3 (30%) 4 (44%) 6 (60%) 0 (0%)

Samba 3.5.0→ 4.0 9 9 1 (11%) 3 (33%) 6 (67%) 6 (67%) 0 (0%)
Average - - 22% 35% 35% 71% 5%

in rk+1 from (sub) teams of rk. Note that the number of mergers also considers sub-groups
derived from the splits in rk. That is, two groups t1, t2 of rk can split in t1′ , t1′′ , t2′ , and
t2′′ (two splits occur). Then, in rk+1, t1′ and t2′ as well as t1′′ and t2′′ merge (two mergers
occur).

To address RQ2, we compute the average MQ and CCBC for files modified by each team
before and after splits and mergers, and compare it by means of boxplots, and appropriate
statistical tests, i.e., Wilcoxon rank sum paired test [81]. Specifically, we test the null hypoth-
esisH0a: there is no significant difference between the average MQ (CCBC) before and after
split, and the null hypothesis H0b: there is no significant difference between the average MQ
(CCBC) before and after mergers. Then, we estimate the magnitude of the variation using
Cliff’s Delta (d) [82], a non-parametric effect size measure for ordinal data, which indicates
the magnitude of the effect of the main treatment on the dependent variables. The effect size
ranges in the interval [−1, 1] and is considered small for 0.148 ≤ d < 0.33, medium for
0.33 ≤ d < 0.474, and large for d ≥ 0.474 [83].

3.3 Analysis of the Results

This section describes the results achieved aiming at providing answers to the research ques-
tions formulated in Section 3.2.

66

3.3. Analysis of the Results

Figure 3.3: A stable groups of developers (in blue) that joined different teams during software evolution.

3.3.1 RQ1: How do emerging collaborations change across software re-
leases?

Table 3.2 reports—for each pair of releases rk and rk+1 considered in our study—the num-
ber of teams identified in the discussions following the two releases, as well as the number
of teams that split in release rk, merged in release rk+1, that survived in rk+1, totally dis-
appeared, and the new teams that emerged in rk+1. Details about developers’ involvement
in the various releases are shown in Table 3.3 which reports—for each pair of releases—the
number of developers that (i) were inactive during that interval, i.e., did not participate to the
discussion nor they made any code change, (ii) joined the project, i.e., during that period they
participated to the discussion and performed code changes, or, (iii) likely left the project, i.e.,
from that period until the end of our observation they never participated in the discussion nor
made changes again.

The analysis of results reveals that, even if the number of teams across releases is quite
stable, there is a continuous reorganization of teams during the evolution of a project. In all
four projects, at least 50% of the teams, on average, survived from release rk to rk+1 (for
Samba and Netbeans this value is above 62%). This means that in the new release at least
half of the developers tend to work in the same teams, while the remaining ones re-organize
their work.

There is also a substantial number of teams that disappeared from release rk to release
rk+1. This phenomenon is particularly evident for Eclipse JDT and Apache. Specifically,
for Apache and Eclipse JDT the percentage of teams identified in rk that are not present
anymore in release rk+1 is around 50%. This means that several teams completely crumble
from one release to another, i.e., some developers join different teams or leave (definitively or
temporarily) the project (see Table 3.3). It can be noticed that, for Apache and Eclipse JDT,
the high number of teams that disappeared is balanced by a comparable number of survived

67

Evolution of Emerging Collaborations and its Relation with Code Changes

Table 3.3: Inactive (IN), new (N), and developers that likely left the project (DL).
rk→ rk+1 IN N DL
Apache 2.0→ 2.2.0 2 23 2
Apache 2.2.0→ 2.2.4 4 10 3
Apache 2.2.4→ 2.2.12 15 5 6
Apache 2.2.12→ 2.4.1 2 8 6
Eclipse JDT 3.0→ 3.2 2 7 1
Eclipse JDT 3.2→ 3.4 3 2 2
Eclipse JDT 3.4→ 3.6 6 3 4
Eclipse JDT 3.6→ 4.2 1 2 1
Netbeans 2.3→ 3.0.20 5 23 7
Netbeans 3.0.20→ 3.0.25 3 41 6
Netbeans 3.0.25→ 3.5.0 13 45 2
Netbeans 3.5.0→ 4.0 5 10 4
Samba 2.3→ 3.0.20 4 27 13
Samba 3.0.20→ 3.0.25 5 17 12
Samba 3.0.25→3.5.0 2 35 4
Samba 3.5.0→ 4.0 15 8 24

Table 3.4: Change of MQ and CCBC when teams split: Wilcoxon test results and Cliff’s d.

Project MQ CCBC
p-value Cliff’s d p-value Cliff’s d

Apache httpd <0.01 57 (large) <0.01 32 (small)
Eclispe JDT <0.01 64 (large) <0.01 0.5 (large)
Netbeans <0.01 59 (large) <0.01 0.67 (large)
Samba <0.01 25 (small) <0.01 0.40 (medium)

teams (with few new emerging teams). Specifically, for such projects about 50% of the teams
in release rk+1 is completely new, i.e., composed of developers belonging to different teams
or of newcomers, as can be noticed in Table 3.2. However, if we consider all the projects
in this study, the number of teams disappeared in a project is very often much lower of the
number of survived teams. For all the projects, the number of teams that disappear in a
version rk and the number of teams that emerge in rk+1 is much lower, suggesting that a part
of the existing teams tend to recombine.

To provide a qualitative evidence of the above observations, we inspected the source code
change history and mails for the above identified teams. Figure 3.3 shows a group of nine
Netbeans developers (highlighted in blue) that joined different teams in three subsequent
releases (2.3, 3.0.20, and 3.0.25). As we can notice such developers always worked together,
albeit moving across different teams, i.e., involving other people in different releases.

68

3.3. Analysis of the Results

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

Before After Before After Before After Before After

0.
0

0.
5

1.
0

1.
5

2.
0

M
Q

Apache Eclipse JDT Netbeans Samba

(a) MQ

●

●
●
●

●

●●

●●

●●

Before After Before After Before After Before After

0.
0

0.
5

1.
0

1.
5

2.
0

C
C

B
C

Apache Eclipse JDT Netbeans Samba

(b) CCBC

Figure 3.4: MQ and CCBC before and after team splits.

69

Evolution of Emerging Collaborations and its Relation with Code Changes

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

Before After Before After Before After Before After

0.
0

0.
5

1.
0

1.
5

2.
0

M
Q

Apache Eclipse JDT Netbeans Samba

(a) MQ

●

●

Before After Before After Before After Before After

0.
0

0.
5

1.
0

1.
5

2.
0

C
C

B
C

Apache Eclipse JDT Netbeans Samba

(b) CCBC

Figure 3.5: MQ and CCBC before and after team mergers.

70

3.3. Analysis of the Results

Table 3.5: Change of MQ and CCBC when teams merge: Wilcoxon test results and Cliff’s d.

Project MQ CCBC
p-value Cliff’s d p-value Cliff’s d

Apache httpd 0.036 0.40 (medium) 0.02 0.29 (small)
Eclipse JDT 0.07 0.32 (small) 0.03 0.18 (small)
Netbeans 0.11 0.45 (medium) 0.01 35 (medium)
Samba 0.09 0.04 (small) 0.01 40 (medium)

RQ1 summary: Teams continuously evolve during the evolution of a software sys-
tem. We observed that groups of people build stable working relations (at least 50%
of the teams survive between two subsequent releases), and occasionally work with
others).

3.3.2 RQ2: How does the evolution of emerging collaboration relate to
the cohesiveness of files changed by emerging teams?

Figure 3.4 shows boxplots of how MQ and CCBC vary after teams split. Table 3.4 comple-
ments Figure 3.4 with results of Wilcoxon test and Cliff’s d effect size values. Results for
all four projects indicate that when teams splits, MQ and CCBC significantly increase with a
large effect size. Therefore for both metrics we can reject the null hypothesis H01.

For the mergers, Figure 3.5 shows boxplots of MQ and CCBC variations, while Table
3.5 reports results of Wilcoxon test and Cliff’s d effect size values. In this case, we did not
observe a significant increase of MQ (except for Apache). Hence, it is not possible to reject
H0b for what concerns MQ. In the case of team merger one would expect that the MQ could
even decrease, because the focus of the new team will likely be broader. However, not only
this does not happen, but also MQ slightly increases. Also, we can observe how the CCBC
always significantly increases (hence we can reject H0b in this case), although the effect size
is medium for Netbeans and Samba, and small in the other cases. A possible interpretation
to the results obtained for the mergers is that the previous teams join their force to work on a
new, focused task.

To provide qualitative explanations to the above results, we inspected source code changes
and mails for the above identified teams. Figure 3.6 depicts a scenario where two Samba
teams merge between release 2.3 and 3.0.20. The analysis of the file changed by each team
revealed that:

• Team 1 is a testing team, i.e., a team of developers that is called very often to test
some new components or features. The developers of this team, between the various

71

Evolution of Emerging Collaborations and its Relation with Code Changes

Figure 3.6: Example of team merger in Samba: as Team 1 no longer need to develop test cases (mostly available in
release 3.0.20).

commitments, mainly worked on the testsuite folder of the Samba project. Specifically,
they wrote test suites for the modules libsmbclient, smbd, and nsswitch.

• Team 2 is a development team. The analysis of the change logs highlights that the
development effort of this team is mainly focused on the modules auth, nmbd, nsswitch,
smbd and sam.

This suggests that in Samba 2.3 there is an evident effort in the development of test cases,
that required a group of developers to work mainly on testing activities.

In addition, from the analysis of test cases developed by Team 1, we can derive a “latent"
relationship between Team 1 and Team 2, i.e., the testing team provided test cases for some
modules developed by Team 2.

In release 3.0.20, Team 1 and Team 2 merged. As a consequence of such a merger, the
values of both MQ and CCBC increased. Specifically, the MQ increased of 73%, from an
average of 0.71 to 1.23. The CCBC increased of 53%, from an average of 0.43 to 0.66. We
expect that this variation depends on the fact that developers of the two past teams in the
new release focus their effort in files that are structurally and semantically more related. The
analysis of changes performed by the new team indicated less activity on the development
of test suites, likely because such test suites were mostly produced in the previous release,
hence they only needed to be repaired where necessary. In addition, the files changed by the
new emerging team in release 3.0.20 revealed that the developers focused the development
activity on the module heimdal. In release 3 Samba used the external Kerberos authentica-
tion. Starting from such a release the developers worked on the integration with Heimdal (an
implementation of Kerberos 5), integration that was fully available only in release 4. In this

72

3.3. Analysis of the Results

Figure 3.7: Example of team split in Apache httpd from release 2.2.4 to release 2.2.12.

case the reorganization of teams is triggered by the need to deal with changes in the project
design and implementation.

We found cases in which, when teams split, one of the metrics (CCBC) significantly
increased, while the other (MQ) did not, or vice versa. Specifically, let us to consider the
Apache httpd project, where there are few cases in which emerging teams that are obtained
by a split of a previous emerging team (from the previous release) had an increase of the re-
sulting CCBC with a corresponding decrease of MQ. For example, as it can be seen from
Figure 3.7, from release 2.2.4 to release 2.2.12, a team of five developers (Bryan, Lars,
Mads, Mark, Sander) is split into two smaller teams of two (Bryan and Sanders) and three
developers (Lars, Mads and Mark) respectively. The team of release 2.2.4 is mainly fo-
cused on some sub-modules of os (e.g., os/win2, os/unix, os/os2) and os (e.g.,
modules/proxy, modules/test, modules/database). In the new release, the
team splits into two sub-teams. Both teams continue to work on sub-modules of os, how-
ever separating their activities, i.e., the first team works on other modules of modules/
(e.g., modules/proxy, modules/test, modules/database) and the second on
support/win32, docs/manual and docs/conf modules. At the same time, both
teams also work on some os modules. It happens that the modules modified by each of these
two teams are somewhat decoupled (therefore, the MQ decreases by 45%, from an initial MQ
of 0.29 to an average MQ of 0.20 between the two teams). However, the conceptual cohesion
is high, in that such modules share several concepts. For example, we found an increase of
shared common words between the os, support, docs modules, terms mainly related to
code changes for support windows platform (winapi, windowsStation and so on). As a con-
sequence, the CCBC value increases of more than times its value (from an initial CCBC of
0.36 to a CCBC of 0.86).

73

Evolution of Emerging Collaborations and its Relation with Code Changes

RQ2 summary: Both MQ and CBCC increase when teams split, while MQ does not
significantly changes and CCBC increases when teams merge. This means that team
reorganization relates to work on more (structurally and semantically) cohesive sets
of files.

3.4 Threats to Validity

This section discusses the threats to validity of the study reported in this study, categorized
into threats to construct, conclusion, internal, and external validity.

Threats to construct validity concern the relationship between theory and observation.
Previous work in this area used either mailing lists [68] or issue trackers [36] to identify the
developers’ communication network. To mitigate the risk of missing links, in this study we
consider both sources of information. Although communication in open source projects is
usually asynchronous [26] and therefore the aforementioned communication channels should
be considered as representative enough of the actual developers’ communication, we are
aware that written communication through mailing lists can constitute a partial view of the
overall communication, as also reported in a study by Aranda and Venolia [34]. However,
such a problem is more crucial in industrial projects than in OSS projects where emails con-
stitute the premier mean of communication for developers working around the world.

As explained in Section 4.2.2, we mitigated imprecision and incompleteness of the map-
ping and unification of mailing lists and issue trackers contributor names, and of their map-
ping onto author IDs available in the versioning system, by performing a manual validation.
Besides that, it is important to note that we considered as authors only those mentioned in
the versioning system. However, we cannot exclude that code changes were authored by
somebody not mentioned there.

Threats to conclusion validity concern the relationship between treatment and outcome.
Where appropriate—i.e., for RQ2—we use appropriate (non parametric) statistical tests and
effect size measures to support our findings. In other cases, we analyze the phenomenon by
using descriptive statistics.

Threats to internal validity concern factors that can affect the results. The study is purely
observational and we cannot claim a causation between the observed phenomenon, e.g., team
splits/mergers and increase of MQ and CCBC as observed in RQ2. However, we qualita-
tively support such finding by some manual analysis of source code changes and of emails
exchanged between developers.

Threats to external validity concern the generalization of findings. In Section 3.2 we have
motivated the choice of the four open source projects considered in this study. However, the

74

3.5. Related Work

obtained findings have a validity confined to considered OSS projects, and above all cannot
be directly extended to some commercial projects where the face-to-face communication is
more than often used in place of written communication. Having said that, many companies
are increasingly using written communication in issue trackers or mailing lists as a way to
record the decisions taken in a project, hence in such situations what described in this study
is still applicable.

3.5 Related Work

An open source community can be considered as a complex, self-organizing system. Specifi-
cally, such systems are typically comprised of large numbers of locally interacting elements,
where developers the main components in this network [84]. This has motivated a lot of
research effort in mining the social networking among developers (a more detailed related
work about analysis of DSN is reported in Section 2.5).

Capra and Wassermann [26] characterize—by means of a survey involving 70 projects—
management activities in both commercial and open source organizations. They analyze
mechanisms for communication and collaboration, as the internal organizational structure
of the projects. In the investigated open source projects, communication occurs through
asynchronous tools such mailing lists, although IRC channels are also used, and physical
meetings are sometimes organized. Also, they found that the organizational structure of some
open source projects is not much different from those of some closed source projects.

Crowston and Howison [61] use co-occurrence of developers on bug reports as indicators
of a social link. They observe that development teams vary widely in their communications
centralization, from projects completely centered on one developer (usually smaller projects)
to projects that are highly decentralized (usually larger projects). Such a finding inspired
the study by Bird et al. [68] that analyze the relationship between communications structure
and code modularity. Their results show that the sub communities identified using commu-
nication information are significantly connected with collaboration behavior. In our study,
we analyze how the connectedness between communication structure and code cohesiveness
evolve, although as explained in Section 3.2 we use different measures (MQ and CCBC) than
what used by Bird et al. (activity focus).

Hong et al. [36] compare developers’ network events with events occurring in traditional
social networks such as Facebook or Twitter. Our study shares with Hong et al. [36] the anal-
ysis of how emerging teams of developers re-organize themselves over time. However, we
specifically related such a reorganization with the cohesiveness of files they modify, measured
in terms of MQ and CCBC.

75

Evolution of Emerging Collaborations and its Relation with Code Changes

Singh [50] analyzes over 4,000 projects from SourceForge to understand how the rela-
tions among developers influence development activities. His results show that “small-world
communities”—i.e., projects where there are small clusters of developers discussing with
each other—are a factor for the project success. We share with this work the importance
of developers’ discussion during development and the fact that such a discussion, possibly,
occurs in small clusters related to specific components or to specific issues to be handled.

Surian et al. [85] mine collaboration patterns from a large developers’ network in Source-
Forge. They find that not all developers are connected to every other developers and that there
are many collaboration clusters. Their findings are consistent with those of Singh et al. [50];
that is, the small-world phenomenon also exists in SourceForge, especially when developers
in a network are separated, on average, by approximately 6 hops.

The methodology used in this study to analyze the evolution of teams might complement
all these approaches. In particular, the analysis of the communication network can be ex-
ploited not only to identify roles in developer teams but also to identify how teams evolve
during software evolution. The evolution of the teams can be analyzed by a project manager
in order to monitor the “project landscape” [25] and facilitate the integration of newcomers.

3.6 Summary

Differently from commercial projects, where teams are often designed by project managers,
open source projects are characterized by spontaneous collaborations, that result in emerging
teams, often reflected by frequent communication through asynchronous channels such as
e-mails and communications in issue trackers.

This study investigated, by analyzing software repositories of four open source projects—
namely Apache httpd, Eclipse JDT, Netbeans and Samba—how such emerging teams evolve
over time, and to what extent such evolution relates with the developers’ activity on source
code. Results of the study indicate that:

• Emerging teams tend to recombine over time. We often observed groups (e.g., of two
or more developers) having a stable collaboration over time, although involving each
time different other people, i.e., moving between different emerging teams.

• Team splits correspond to a significantly higher cohesiveness of the files teams modify;
specifically, we observed a significant increase of both Modularization Quality (MQ)
and conceptual coupling between classes. The qualitative analysis indicated that the
new emerging teams formed after a split work on closer files than the original ones.

76

3.6. Summary

• Team mergers do not imply a decrease of structural and conceptual cohesiveness. On
the contrary, we found that in general MQ does not change, or it slightly improves,
while the CCBC still increases. Qualitative analysis suggested that teams merged when
they were working on related files and specific circumstances lead developers of one
or both teams to change their activities. This is for example the case when developers
having worked in a period over test cases join their forces with those working on pro-
duction code as there is less need to work on tests. In other cases, team reorganization
can be dictated by changes in the system design and/or implementation.

• in general the evolution/reorganization of emerging teams of developers (identified by
analyzing communication channels) over the time is reflected in cohesive changes in
the source codes. This result, motivates our conjecture about the possibility to do
refactoring/re-modularization of source code by analyzing social interaction between
developers. Specifically, in our previous work [15] we present a technique to suggest
refactoring based on team co-maintenance patterns. If two teams work on the same
module (package, class, method), then the tool can suggest that this module can be
refactored based on the activity patterns. We evaluate the approach using five projects
from the Android API. Differently from this work we want to refactor modules iden-
tifying teams relying on social links extracted from mailing lists and issue trackers
data.

The obtained results shed the light on the collaboration dynamics in open source projects,
highlighting how such dynamics can be influenced by various factors, that could be the atti-
tude of small teams of developers to work together, or changes in specific project needs, e.g.,
performing testing vs. development activities.

77

Evolution of Emerging Collaborations and its Relation with Code Changes

78

Chapter 4

How Developer Communications
are Used to Support Third-Party
Libraries

Contents
4.1 Motivation: analysis of developers collaborations and its impact/relation

on projects dependencies . 81

4.2 Study Definition and Planning . 82

4.2.1 Research Questions . 83

4.2.2 Data Extraction and Analysis 83

4.3 Analysis of the Results . 89

4.3.1 RQ1: How does the Apache ecosystem evolve? 90

4.3.2 RQ2: What is the relation between sub-projects developers over-
lap and sub-projects dependencies? 95

4.3.3 RQ3: How are dependencies discussed between developers? . . . 96

4.4 Threats to Validity . 100

4.5 Related work . 102

4.5.1 Analysis of Software Ecosystems 102

4.6 Summary . 105

79

How Developer Communications are Used to Support Third-Party Libraries

In the Chapter 3 we empirically investigated how, when a project evolves, emerging teams
re-organize themselves—e.g., by splitting or merging. We relate the evolution of teams to
the files they change, to investigate whether teams split to work on cohesive groups of files.
Results of this study—conducted on the evolution history of four open source projects suggest
that emerging team mergers and splits imply working on more cohesive groups of files. Such
indications serve to better understand the evolution of a software project by project newcomer.
More important, the observation of how emerging teams change can serve to suggest software
remodularization/re-factoring actions for newcomers/senior developers that are interested to
better restructure the software components.

In this Chapter we study the evolution of an OSS projects ecosystem of the Apache Soft-
ware Foundation, in terms of number of developers, their interactions and the dependencies
between projects. Our goal is to understand how developer communications are used to
support TPL in such projects ecosystem. Specifically, we analyze a subset of the Apache
ecosystem, consisting of 147 projects, for a period of 14 years, resulting in 1,964 releases.
Specifically, we investigate (i) how dependencies between projects and the developers inter-
actions evolve over time when the ecosystem grows, (ii) what is the relation between sub-
projects developers overlap and sub-projects dependencies, (iii) how developers discuss the
needs and risks of such dependencies upgrades.

The study results—qualitatively confirmed by observations made by analyzing the devel-
opers’ interactions and discussions— suggest the a proper communication between develop-
ers belonging to different sub-projects of the ecosystem is one o the key element that avoid
the presence of bugs and/or fault, as well as, incompatibility problem between projects of
the same ecosystem. Such information can be used for define an approach that help develop-
ers/newcomers to avoid changes that could break the dependency with TPL. Further analysis
are performed to investigate what are the product and process factors that can likely trigger
dependency upgrades [2, 9]. However, we do not report such results in this chapter because
are out of the focus of this thesis.

80

4.1. Motivation: analysis of developers collaborations and its impact/relation on projects
dependencies

4.1 Motivation: analysis of developers collaborations and
its impact/relation on projects dependencies

Software development is a collaboration-based activity. The highest grade of such a collab-
oration can perhaps be achieved when a software company decides to make available their
product line architecture and shared components to external parties. Making available their
own product outside the organizational boundary generates the so-called software ecosys-
tems [86, 87]. In other words, a software ecosystem is a group of software projects that are
developed and co-evolve in the same environment. These projects share source code, depend
on one another, and can be built on similar technologies. In some cases, they generally have a
closed core that provides the basic functionality, and a set of components that provide specific
functionality. For example, the Eclipse project provides the core functionality of an IDE, that
can be customized into any kind of IDE or editor though a specific plug-in. In other cases,
they can be completely different projects sharing a set of common components.

Software ecosystems are therefore a new dimension of collaboration, that allows com-
panies to satisfy the need of their customers as rapidly as possible and facilitate mass cus-
tomization [86]. Thus, in recent years it is possible to observe an increasing trend of software
companies that are moving from product lines towards software ecosystems to better support
the intra-organizational reuse of software. Such a transition recalls the need of methods and
tools to effectively manage both the coordination and the evolution of software ecosystems.

A crucial activity for an effective evolution of a software ecosystem is managing the
upgrades of libraries/components. When one project undergoes changes and issues a new
release, this may or may not lead other projects to upgrade their dependencies. On the one
hand, using up-to-date releases of libraries/components may result useful, because these re-
leases can contain new and useful features, and/or possibly some faults may have been fixed.
On the other hand, the upgrade of a component may create a series of issues. For exam-
ple, some APIs may have changed their interface, or might even be deprecated [88], which
requires the adaptation of its client.

In addition, let us suppose a program uses multiple libraries, namely lib1 and lib2, and lib1
depends on lib2. It can happen that if one upgrades lib2, then lib1 no longer works because
does not support the new release of lib2. Last, but not least, a library/component might have
changed its license making it legally incompatible with the program using it [89]. All these
scenarios suggest that updating a library/component in large ecosystems is a complex and
daunting task, which requires to ponder several factors.

Following the recent trend of studies aimed at analyzing the evolution of software ecosys-
tems [88,90,91], we present an exploratory study conducted on the Java subset of the Apache

81

How Developer Communications are Used to Support Third-Party Libraries

ecosystem focusing the attention on how and why dependencies (i.e., dependencies related
to API usage and/or framework usage through extension) between software projects evolve.
The entire Apache ecosystem is composed of 195 software projects developed by using a
total of 29 programming languages. We analyzed the change history of the 147 Java software
systems, in the period of time going from June 1999 to April 2013 resulting in 1,964 releases.

In our study we analyzed how the number of projects, their size, the dependencies among
them, and the number of active developers changed in the ecosystem during time. After this
preliminary analysis, we study also the relation between sub-projects developers overlap and
sub-projects dependencies. We analyzed mailing lists and issue tracking systems in order
to understand to what extent developers discuss the management of dependencies and what
are the factors subject of the discussion. Such an investigation required the manual analysis
of 7,685 discussions and allowed us to provide some qualitative insights on the evolution of
dependencies in the Apache ecosystem.

The obtained results indicate that pairs of projects having a dependency share a higher
number of developers as compared to pairs of projects do not having a dependency. However,
such an overlap does not influence the client’s upgrade frequency. These observations are also
confirmed by the analysis of communications between developers.

The Chapter is organized as follows. Section 4.2 describes the study definition and plan-
ning, while results are reported in Section 4.3. Section 4.4 discusses the threats that could
affect the validity of the results achieved. Section 4.5 presents the existing literature about
the evolution of software ecosystems and evolution/adaptation of APIs. Finally, Section 4.6
summaries the results of this study.

4.2 Study Definition and Planning

The goal of this study is to analyze the evolution of developers communities in a software
ecosystem, with the purpose of understanding how dependencies are discussed/maintained.
The quality focus is software maintainability, which could be improved by understanding how
developer discuss about software upgrades in mailing lists and issue trackers. The perspective
is of researchers interested in understanding when and why developers upgrade dependencies
in software ecosystems.

The context of the study consists of the entire history of the Java subset of the Apache
ecosystem, that represents the vast majority of it (75% of the projects). To date, the entire
Apache ecosystem is composed of 195 software projects spread over 23 different categories
(e.g., big-data, FTP, mobile, library, testing, XML) and developed by using a total of 29
programming languages. We analyzed the change history of the 147 Java software systems,

82

4.2. Study Definition and Planning

in the period of time going from June 1999 to April 2013 resulting in 1,964 releases. The size
of the ecosystem in the analyzed period of time ranges from 32 up to 28,584 KLOCs, while
the number of classes (methods) ranges from 113 to 114,000 (1,386 to 780,731). For sake of
clarity, in the following we refer to the project having a dependency toward another project
as the “client project” and to the project used by a “client project” as the “library project”.

4.2.1 Research Questions

The study aims at providing answers for the following three research questions:

• RQ1: How does the Apache ecosystem evolve? This research question is preliminary to
the other three, and aims at providing a context for our study. Specifically, we analyze
how the number of projects, their size, the dependencies among them, and the number
of active developers changed in the Apache ecosystem during time. Such information
represents the foundation for the other research questions.

• RQ2: What is the relation between sub-projects developers overlap and sub-projects
dependencies? Our conjecture is that pairs of projects having a dependency share a
higher number of developers as compared to pairs of projects do not having a depen-
dency

• RQ3: How are dependencies discussed between developers? This research question
aims at understanding to what extent is the management of dependencies between a
client and a library discussed by developers over mailing lists and issue trackers, ana-
lyzing the factors object of the discussion and the developers involved.

4.2.2 Data Extraction and Analysis

To answer our research questions we first download the source code of the 1,964 software
releases considered in our study. We use a crawler and a code analyzer developed in the
context of the MARKOS European project1 [92]. The crawler is able to identify for a given
project of interest the list of available releases with their release date as well as its SVN
address. This information is extracted by crawling DOAP (Description Of A Project) files
available on the Internet2.

Using the information extracted by the crawler, the code analyzer checks-out files from
the SVN repository and identifies the folder containing each of the project releases identified

1http://www.markosproject.eu
2http://projects.apache.org/doap.html

83

How Developer Communications are Used to Support Third-Party Libraries

by the crawler. This is done by exploiting the SVN tag mechanism. In other words, the
versioning system of Apache projects has a separate directory for each release (where files
belonging to such a release are stored), besides keeping the project history in the SVN main
trunk. In case the code analyzer does not identify any folder containing a particular release,
it reports the problem. This issue occurred for 278 releases (across all projects) that were
manually downloaded from the Apache release archives, available online for each project3.

Once downloaded all the software releases, we extract dependencies existing between
such releases. Note that in this study we focus on dependencies existing between Java Apache
projects, ignoring those toward projects external to the Apache ecosystem or not written
in Java. Also in this case, the MARKOS code analyzer has been used. The identification
of the inter-project dependencies is performed in different steps. Given a set of software
releases, the code analyzer searches—in each folder release—for files that explicitly report
inter-project dependencies. These files in the Apache ecosystem are generally of three types:
libraries.properties, deps.properties, or the Maven pom.xml files. Note
that the dependency information reported in these files is generally detailed (i.e., both the
name of the project as well as the used release are reported) and reliable.

When the code analyzer is not able to find any of these files, it searches for all jar files
contained in the release folder and attempts at matching each of those files with one of the
other software releases provided. This is done by computing the Levenshtein distance [93]
between the name of the jar archive and the name of each provided release. The output of
the code analyzer is a list of candidate dependencies between the set of provided software
releases.

In our study, we assume that the dependencies extracted by parsing the files libraries.
properties, deps.properties, and pom.xml are correct. Instead, when the depen-
dencies are extracted by analyzing jar files in the release folder, we manually validate and
classify them as true dependencies or as false positives. This operation was done by two of
the authors that analyzed a total of 3,742 dependencies, classifying 832 correct dependencies.
Overall, the final number of dependencies found in the analyzed 14 years of observation and
considered in our study is 3,514 (i.e., 2,682 extracted from dependencies files, plus the 832
manually verified).

After having performed this first data analysis (necessary for all research questions), we
perform analyses specific to each research question, explained in the following.

3An example of archive for the Ant project can be found here http://archive.apache.org/dist/

ant/source

84

4.2. Study Definition and Planning

RQ1 analyses

To answer RQ1 we analyze the history of the Apache ecosystem, considering snapshots cap-
tured every month. In particular, starting from June 1999, we compute, with a granularity
of one month (which we consider sufficient to observe the evolution of the ecosystem over
several years):

[1] the number of existing projects;

[2] the size of the ecosystem in terms of KLOCs;

[3] the dependencies existing between projects.

To analyze how the number of developers changed during time (RQ1), we extract the list
of active developers that worked in the ecosystem during its entire history4. In particular,
from our starting date (i.e., June 1999), we compute the number of active developers at time
intervals of six months (e.g., from June 1999 to January 2000). We consider a developer
active in the time interval of interest if she performed at least one commit in one of the
Apache projects existing at date. Note that, while we consider a granularity of one month for
most of the measures, we check the activity of developers for a six months period, because
the lack of activity for a short period (i.e., one month) can just occur by chance. Note also
that checking whether a developer is active in a given time period does not mean determining
whether a developer has left a project or not. In other words, a developer may not be active in
a given time period, but she can still be part of the project and likely contribute in the future.

RQ2 analyses

Some of the data needed to answer RQ2 (e.g., dependencies, developers working on the var-
ious projects) is already available after having performed the general data extraction and the
RQ1-related data extraction as described above. Specifically, we describe how we measure
the dependent and independent variables that concern the analyses of RQ2, and explain the
kinds of statistical analyses we perform.

Dependent Variable: Upgrades. Given the dependencies existing between different project
releases, we distinguish releases of the libraries that are upgraded by client projects (hereby
referred as upgraded releases) and releases ignored by client projects (hereby referred as not
upgraded releases).

4Note that we limit our analysis to developers we can detect through their activities in the versioning system, as
also pointed out in Section 2.4.

85

How Developer Communications are Used to Support Third-Party Libraries

r1

T
im

e

Project Pi Pj

r1 r1

Pi Pj

r1

r2

r2

r3 r2

r2

r3

r1

Pi Pj

r1

r2

r2

r3

Not upgraded releases Upgraded releases

Figure 4.1: Process used to divide upgraded and not upgraded releases.

To create the two sets of releases (i.e., upgraded releases and not upgraded releases) we
adopt the process depicted in Fig. 4.1. For each pair of Apache projects, Pi and Pj , having at
least one dependency between their releases, when Pi upgrades the dependency towards Pj ,
we determine whether Pi upgrades the dependency toward to the last existing release of Pj
or to another release. In the former case, we put the upgraded Pj release in the set upgraded
releases. Instead, when the upgrade was not toward the last available release we still put the
upgraded Pj release in the set upgraded releases, however we also put the newer ignored
releases of Pj in not upgraded releases.

To better understand how we compute such sets, Fig. 4.1 shows three different evolution
scenarios of dependencies between two projects Pi and Pj . Let us assume that the release
r1 of Pi depends on the release r1 of Pj . Then, a new version of project Pi is released
(r2). In the first scenario, when r2 for Pi is released, its dependency is upgraded to r3 of
Pj , the last available Pj release. In this case, r3 is included in the set upgraded releases,
while no releases are added to the set not upgraded releases, since Pi correctly upgraded its
dependency to the last available Pj release. In the second scenario (reported in the middle
of Fig. 4.1), the release r2 of Pi upgrades its dependency to the release r2 of Pj , even if a
newer release (i.e., r3) is available. In this case the release r3 of Pj has been “ignored” by Pi
and thus, it is added to the set not upgraded releases, while release r2 of Pj is added to the
set upgraded releases. In the third and last case, Pi does not upgrade at all the dependencies
toward Pj , i.e., the new release of Pi continues to use the release r1 of Pj , despite the
availability of more recent releases (i.e., r2 and r3). In this case, r2 and r3 are added to the
set not upgraded releases, while no releases are added to the set upgraded releases.

Note that, if a release ri of a project Pj belongs to the set of upgraded releases when

86

4.2. Study Definition and Planning

analyzing dependencies between Pi and Pj , and the same release belongs to the set of not
upgraded releases when analyzing dependencies between a project Ps and Pj , the release
ri is removed from both sets, and not considered any longer in the comparison between up-
graded releases and not upgraded releases. This is done (i) to avoid overlap between the two
sets (which would make the comparison unfair); and (ii) to strongly isolate only releases that
are generally upgraded (and not) by client projects.

Independent Variable - Developers’ overlap. We analyze the overlap in terms of active
developers (already detected to answer RQ1) between all pairs of projects existing in the
Apache ecosystem. Given two projects C and L, the developers’ overlap (in percentage)
between them is computed as:

overlapC,L :
|DC ∩DL|
|DC ∪DL|

where TC are the developers of project C and TL are the developers of project L. With this
analysis we want to understand if (i) pairs of projects having a dependency share more/less
developers than pairs of projects do not having a dependency and (ii) client projects having a
high overlap of developers with the libraries they use have a higher upgrade frequency (still
by using the Spearman correlation).

RQ3 analyses

Concerning RQ3, we downloaded 5 the Apache mailing lists and the discussions on the
Apache issue trackers for the projects object of our study showing at least a dependency.
This resulted in the download of 84 mailing lists and nine issue trackers. Note that the num-
ber of issue trackers downloaded is considerably lower than the number of mailing lists, due
to the fact that most of the Apache projects use Jira6 as issue tracker, which automatically
forwards discussions to the projects’ mailing list. Therefore, in such cases it was sufficient to
limit our analyses to mailing list only. Instead, this is not the case for projects using Bugzilla7.
Overall, we downloaded 664,490 discussions containing a total of 1,924,002 messages.

Then, for each pair of projects C, L exhibiting a dependency, we filter—from the project
C mailing lists and issue tracker—all discussions containing (in the mail object/issue title
or in the mail body/issue description) the name of project L. Similarly, we filter—from the
project L mailing lists and issue tracker—all discussions containing (in the mail object/issue

5http://mail-archives.apache.org/mod_mbox/
6https://issues.apache.org/jira/secure/Dashboard.jspa
7http://www.bugzilla.org/

87

How Developer Communications are Used to Support Third-Party Libraries

Table 4.1: Tags assigned to classify the mailing lists discussions.

Tag Applied when Constraints

GENERAL TAGS
client The discussion is in the client mailing list [if !library]
library The discussion is in the library mailing list [if !client]

dependency
The discussion focuses on the dependency
between the client and the library

-

DEVELOPERS TAGS
only develop-
ers client

only developers of the client project take
part to the discussion

[if dependency && !only develop-
ers library && !both developers]

only develop-
ers library

only developers of the library project take
part to the discussion

[if dependency && !only develop-
ers client && !both developers]

both develop-
ers

both developers of the client and of the li-
brary projects take part to the discussion

[if dependency && !only develop-
ers library && !only developers
client]

TOPIC TAGS

break
the discussion is about avoiding changes
that could break the dependency

[if dependency && !fix && !up-
grade && !use && !other]

fix
the discussion is about changes needed to
fix a dependency

[if dependency && !break && !up-
grade && !use && !other]

upgrade

the discussion is focused on whether up-
grading/not upgrading a dependencies to-
ward a new available release of the library
project

[if dependency && client && !fix
&& !break && !use && !other]

use
the discussion is about how to use the li-
brary project

[if dependency && client &&
!fix && !upgrade && !break &&
!other]

other
the discussion is about the dependency, but
cannot be classified with any of the previ-
ous tags

[if dependency && !break && !fix
&& !upgrade && !use]

title or in the mail body/issue description) the name of project C. This resulted in 7,685
discussions that have been manually analyzed by two of the authors, and classified using the
tags shown in Table 4.1.

The manual analysis has been performed as follows. Firstly, general tags are assigned
to the discussion, classifying it as belonging to the client or to the library mailing list/issue
tracker and, most importantly, verifying if the discussion is focused on the management of
the dependency between the client and the library project (tag dependency in Table 4.1).

88

4.3. Analysis of the Results

Apr 2013Jun 1999 Apr 2001 Apr 2003 May 2005 May 2007 Jun 2009 Jun 2011

30,000

0

5000

10,000

15,000

20,000

25,000
KL

O
Cs

 o
f t

he
 e

nt
ire

 A
pa

ch
e

ec
os

ys
te

m

Figure 4.2: Evolution of the size in the Apache ecosystem.

Then, if the tag dependency has been assigned to the discussion, developers and topic tags
are also associated to it. Developer tags aim at classifying the developers taking part to the
discussion, while topic tags categorize the aim of the discussion (see Table 4.1). Developer
tags have been automatically assigned by matching the email addresses used in the mailing
lists/issue trackers with those used in the versioning systems of the project under study. We
report descriptive statistics of the tags assigned to the analyzed discussions, and then discuss
the most interesting cases. Note that results of the manual analysis performed in the context
of this research question can also help in corroborating quantitative findings from RQ2.

4.3 Analysis of the Results

This section discusses the study results, in order to answer the four research questions for-
mulated in Section 4.2.

89

How Developer Communications are Used to Support Third-Party Libraries

Apr 2013Jun 1999 Apr 2001 Apr 2003 May 2005 May 2007 Jun 2009 Jun 2011

375

0

25

50

75

100

125

150

175

200

225

250

275

300

325

350

#Apache projects

#dependencies between Apache projects

Figure 4.3: Evolution of the projects and dependencies in the Apache ecosystem.

4.3.1 RQ1: How does the Apache ecosystem evolve?

Fig. 4.2, 4.3, and 4.4 report the evolution over time of the Java Apache ecosystem, in terms of
size measured in KLOCs (see Fig. 4.2), number of projects (black line in Fig. 4.3), number of
dependencies existing between them (gray line in Fig. 4.3), and number of active developers8

(Fig. 4.4).

As expected, during the analyzed 14 years, the size of the Apache ecosystem (Fig. 4.2)
grows up exponentially (model fitting resulted in an adjusted R2 = 0.56). From the single
Java project existing in 1999 (i.e., APACHE ECS9) the Apache ecosystem grows up to the
147 Java projects existing today. Such a growth is linear (adjusted R2 = 0.98). With the
number of projects also the size—see Fig. 4.2—of the entire ecosystem grows, by reaching
almost 30 Million LOCs in April 2013. A very strong peak in the size of the ecosystem can
be observed between the end of 2006 and the begin of 2007, when the Apache ecosystem
doubled its size. In this period, several new, large project have been added to the ecosystem.

8Remember that we consider a developer “active” if she performed at least one commit in the previous six
months.

9http://projects.apache.org/projects/ecs.html

90

4.3. Analysis of the Results

Jan 2014Jan 2000 Jan 2002 Jan 2004 Jan 2006 Jan 2008 Jan 2010 Jan 2012

2000

0

200

400

600

800

1000

1200

1400

1600

1800

N
um

be
r

of
 a

ct
iv

e
de

ve
lo

pe
rs

 in
 th

e
en

tir
e

Ap
ac

he
 e

co
sy

st
em

Figure 4.4: Evolution of active developers in the Apache ecosystem.

Examples include APACHE UIMA10 with its two millions of LOCs and APACHE DERBY11

with almost one million LOCs.

Fig. 4.4 shows that the number of active developers grows exponentially (adjusted R2 =

0.82) until January 2006 together with the increase of the number of projects (Fig. 4.3) in the
Apache ecosystem. In particular, in 2006 there were 58 Java projects carried out by almost
1,800 developers. Then, while the number of projects continued its linearly growth (see Fig.
4.3), the number active developers stopped its growth, and remained almost stable for four
years at a level of 1,800 people. Then, from 2011 beyond we observed a decrease of the
number of active developers. At the time of writing (November 2013) such a number is of
around 1,200 units.

Given the continuous increase of the number of projects in the ecosystem, this result
might appear counterintuitive. We found two possible interpretations for that. The first one
is related to the developers’ overlap existing between the Apache projects. As previously
mentioned, the developers base in 2006 was very large (1,800 people), therefore when new
projects were added to the ecosystem, it is likely that they were mostly carried out by de-

10http://uima.apache.org/
11http://db.apache.org/derby/

91

How Developer Communications are Used to Support Third-Party Libraries

0 50 100 150
0

50

100

150

Figure 4.5: Developers’ overlap in the Apache ecosystem in 2013.

velopers already active on other (previously existing) projects. A relevant example is rep-
resented by the APACHE COMMONS projects, that are evolved and maintained by a very
cohesive community of developers. The number of distinct developers working in 2013 on
the Apache ecosystem is 147, against 2674 developers counted by project (i.e., a developer
is counted multiple times if she works on more than one project). However, if we count, for
each APACHE COMMONS projects, the number of developers working on it (i.e., a developer
is counted multiple times if she works on more than one project) we obtain a total of 2,674
developers. This means that there is a strong overlap of developers between these projects.
Thus, when new projects are added to the ecosystem, this does not necessarily imply that new
developers also join the ecosystem.

To get a better view of the developers’ overlap existing between the Apache projects,
Fig. 4.5 shows, for each pair of the analyzed 147 Java projects, the percentage of developers
overlap in 2013: black means 100% of overlap between the two projects, white means 0%
of overlap. The diagonal is colored in black by default, since each project will have 100%

92

4.3. Analysis of the Results

of developers’ overlap with itself. As we can see, several projects share developers, also in
high percentage. The black rectangle that can be observed in the right-up part of Fig. 4.5
corresponds to the APACHE COMMONS projects.

While the overlap figure explains the stable number of developers between 2006 and
2011, it is still unclear why from 2001 to 2013 the developers base decreases, despite the in-
crease of projects in the ecosystem. As it can be noticed from Fig. 4.3, on the one hand
the number of projects does not have a substantial increase between 2011 and 2013 (12
projects added). On the other hand, in such a period the overall ecosystem LOC (Fig. 4.2)
increased of about 18%. That is, changes occurred in the ecosystem mainly concerned addi-
tion/improvement of features in existing projects (as well as bug fixes). However, this kind
of activity concerned a relatively limited number of developers, whereas many developers
worked on the early development activity of each project. Also, until 2011, several projects
have reached a very stable state, in which there is not a lot of activity. Therefore, we see a
decrease in the number of active developers (which does not necessarily mean that developers
abandon the project). For example, the last release of APACHE CHAINSAW12 is dated March
2006, while the last release of APACHE COMMONS BETWIXT13 is dated March 2008.

Referring to the previous examples, the number of developers in APACHE CHAINSAW

has decreased from eight in 2004 to one in 2013, while the number of developers in APACHE

COMMONS BETWIXT from 19 to five in the same time period. Besides that, we noticed that
also very active projects—i.e., still issuing releases during the last year—had a decrease of
active developers due the reached mature state. For instance, in 2005 APACHE COCOON14

had 64 active developers; nowadays the number of active developers is reduced to seven.
Finally, it is worth noting that Goeminne et al. [94] observed in the GNOME ecosystem a
variation trend for the number of active developers very similar to the one we found in the
Apache ecosystem. Specifically, after an initial increase of active developers from 1997 to
2003, they found the developers base to be almost stable until the 2008. Then, they observed
a decrease of the active developers from 2008 until 2013.

Fig. 4.3 shows that the number of dependencies between projects continuously increases
during evolution. Similarly to the size, but differently from the number of projects, depen-
dencies follow an exponential trend (adjusted R2 = 0.56). In fact, until 2003 (when about
25 projects were in the ecosystem) there were few dependencies between the projects. Af-
ter 2003, dependencies sensibly grow in the following years. This is mainly due to the fact
that several projects added after 2003 are projects implementing reusable components—like

12http://logging.apache.org/chainsaw/
13http://commons.apache.org/proper/commons-betwixt/
14http://cocoon.apache.org/

93

How Developer Communications are Used to Support Third-Party Libraries

2002

2004

2006

2008
2010

2013

Figure 4.6: Snapshots of projects and their dependencies in the Apache ecosystem history.

those belonging to the APACHE COMMONS15—that are used as libraries by several Apache
projects. For example, the number of client projects for APACHE COMMONS COMPRESS16

grows up to 20 (April 2013).

To provide a better view on how the Apache software projects and the dependencies be-
tween them evolved during time, Fig. 4.6 shows snapshots of the Apache ecosystem from
2002 to 2013. We ignored the years before 2002 since, as reported in Fig. 4.3, the number
of projects (and dependencies) is quite low. In the graphs of Fig. 4.6, each node represents a
project, while an edge connecting two nodes represents a dependency between two projects.
By looking at the figure it is clear as the net of dependencies in the ecosystem grows during
evolution. Also, if focusing on the 2013 snapshot, we can notice several hub projects, i.e.,
projects having a lot of client projects. Besides the previously discussed APACHE COMMONS,
other hub projects are for example APACHE LOG4J17 (having 31 client projects), APACHE

GERONIMO18 (30), and APACHE ANT19 (29). It is worth noting that all these projects im-
plement quite general and reusable features, useful for software projects having different
purposes.

RQ1 summary: We can summarize results of RQ1 stating that the Apache ecosys-
tem size and dependencies exponentially increase over time. Instead, the number of
active developers increased until a certain point (2006), then it remained stable un-
til 2011, since new projects were basically maintained by existing developers, and
finally decreased because some projects became stable and required less activity.

15http://commons.apache.org/
16http://commons.apache.org/proper/commons-compress/
17http://logging.apache.org/log4j/
18http://geronimo.apache.org/
19http://ant.apache.org/

94

4.3. Analysis of the Results

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●●
●

●

●

●

●●●
●

●●

●

●
●●
●

●

●
●

●

●
●

●

●
●
●

●

●

●●

●

●
●
●

●
●
●
●

●

●
●●
●

●
●
●●●
●●

●

●

●

●

●

●

●

●●

●●

●
●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●

●●
●●

●

●●●●●

●

●●●

●

●

●●●
●
●●
●
●●●●●
●
●●

●

●

●●

●
●
●

●

●

●

●●

●
●●
●

●

●

●
●

●
●
●

●
●

●
●

●

●
●

●

●●

●
●
●
●

●●

●
●

●

●

●●
●

●
●

●

●

●

●

●

●●
●
●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●●

●

●●●●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●
●

●

●

●●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●
●●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●
●●
●

●

●
●

●

●●●
●
●

●

●●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●
●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●●
●

●

●

●

●
●●●

●
●●

●

●●

●

●

●●●●

●

●

●

●
●
●●
●

●

●

●●

●
●

●

●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●
●

●

●

●

●●

●

●●

●

●

●
●

●

●

●

●
●●

●●

●●
●

●

●

●
●
●

●

●

●●

●

●

●
●●

●

●

●●

●●

●

●

●
●
●
●

●●●

●

●

●

●
●

●

●

●

●

●

YES NO

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Dependency

D
ev

el
op

er
s

O
ve

rla
p

Figure 4.7: Developers’ overlap (in percentage) in projects having and not having a dependency.

4.3.2 RQ2: What is the relation between sub-projects developers over-
lap and sub-projects dependencies?

In the following, we report and discuss results for each one of the independent variables of
RQ2 described in Section 4.2.2.

Developers’ overlap. Concerning the overlap of developers between projects, we first in-
vestigated whether pairs of projects having a dependency share a greater number of develop-
ers than projects do not having a dependency. Fig. 4.7 reports the distribution of developers’
overlap between projects having and not having a dependency, showing as the former gen-
erally share a higher number of developers as compared to the latter. This difference is also
statistically significant: the Mann-Whitney test returned a p-value <0.01, with a medium
effect size (Cliff’s d=0.47).

After that, we checked whether among the pairs of projects having a dependency, those
sharing a higher number of developers with the library they use also exhibit a higher upgrade

95

How Developer Communications are Used to Support Third-Party Libraries

Table 4.2: Tags manually assigned to the 871 discussions talking about dependencies between projects.

Tag Number of discussions Percentage
GENERAL TAGS

client 759 87%
library 112 13%

DEVELOPERS TAGS
only developers client 725 83%
only developers library 107 12%
both developers 39 5%

TOPIC TAGS
break 24 3%
fix 283 33%
upgrade 187 22%
use 53 6%
other 324 36%

frequency by the client (i.e., the client tends to upgrade more frequently to new releases of
the library projects). In particular, we computed the Spearman correlation between the client
upgrade frequency and the average overlap of developers it has with its libraries. However,
we only observed a small correlation (ρ =0.13, p-value<0.01).

RQ2 summary: Pairs of projects having a dependency share a greater number of
developers than pairs of projects not having a dependency. This result is a first
indication that client and library projects co-operate in the management of the de-
pendency, that will be object of our RQ3.

4.3.3 RQ3: How are dependencies discussed between developers?

Among the 7,685 discussions manually analyzed, 871 received the dependency tag, indicating
that the discussion was actually about the management of a dependency between a client and
a library project. Table 4.2 reports, for each of the tags considered in our study, the number
(and percentage) of discussions to which it has been assigned.

Starting from the “general tags”, it is clear that most of the discussions on dependencies’
management is carried out on the client projects’ side. In fact, 759 out of the 871 discussions

96

4.3. Analysis of the Results

(87%) were extracted from the clients mailing lists and issue trackers. This is an expected
result, since it is reasonable to think that between client and library projects the former ones
are those more interested in the correct working of dependencies. This is also confirmed by
the “developers tags” showing as 83% of discussions related to dependencies only involve
developers from the client project. However, even if in a smaller proportion (12%), also de-
velopers of the library projects discuss about dependencies management, sometimes together
with the developers of the client projects (5%).

Concerning the topic object of the discussions (“topic tags” in Table 4.2), we found 33%
of them focused on fixing problems caused by a dependency (tagged as fix). Specifically, we
observed discussions concerning different kinds of problems. The most common problems
observed are those related to bugs present in the used library, consequently causing a bug
in the client project. For instance, such a kind of problem was discussed in the APACHE

STANBOL20 mailing list. APACHE STANBOL is a software providing reusable components for
semantic content management (e.g., automatic tag extraction from webpages, text completion
in search fields, etc.), and it uses as library APACHE TIKA21, a toolkit able to detect and
extract metadata and structured text from various document formats. Developers of the client
project discuss22 about problems related to the extraction of metadata from JPEG images.
This feature is provided to STANBOL by the TIKA library.

Another discussion tagged as fix occurred in the APACHE MINA23 mailing list. MINA,
a network application framework to develop high performance and scalability networks, is
used as library by the APACHE SSHD24 project, supporting SSH protocols for client-server
communications. In this case25, developers are discussing about a problem found MINA
2.0.2, and causing a bug in SSHD. The solution has been the simple upgrade to MINA 2.0.4,
fixing the reported issue.

22% of the analyzed discussions was tagged as upgrade, indicating that the discussion
was focused on whether upgrading or not a dependency towards a new available release of a
library project. A very interesting example is the one we found in the APACHE TORQUE26

mailing list. TORQUE is an object-relational mapper for java using several Apache projects
as library (i.e., COMMONS BEANUTILS, COMMONS COLLECTIONS, COMMONS CONFIGU-
RATION, COMMONS LANG, XERCES-J, XML COMMONS, VELOCITY, and ANT). Developer

20http://stanbol.apache.org/
21http://tika.apache.org/
22http://tinyurl.com/p3nxkyc
23http://mina.apache.org/
24http://mina.apache.org/sshd-project/
25http://tinyurl.com/nfrqfrf
26http://db.apache.org/torque/torque-4.0/index.html

97

How Developer Communications are Used to Support Third-Party Libraries

T.F. wrote in the discussion27:

I have gone through the libraries Torque depends on and seen if there is a newer
version available. Those are the updates I would suggest:

commons-beanutils from 1.6.1 to 1.7.0
commons-collections from 3.0 to 3.1
commons-configuration from 1.0 to 1.1
commons-lang from 2.0 to 2.1
xercesImpl from 2.4.0 to 2.6.2
xml-apis from 1.0.b2 to 2.0.2
ant from 1.5.1 to 1.6.5

[...]

Note that velocity is not updated to 1.4. I have heard rumors that version 1.4 has
a memory leak (but I have also heard rumors that the current velocity version
chokes in very large files, so not sure whether the memory leak is not already
there in 1.3.1). [...]

This discussion suggests that (i) sometimes the choice to ignore a new available release of
a library the client depends on (VELOCITY 1.4 in this case) is based on the fear to introduce
errors in the client project, and (ii) even when some effort is spent to upgrade dependencies
like in this case, not all dependencies are upgraded together.

Several discussions tagged as upgrade also confirmed the fact that potential brakes in the
client push away the client from upgrading their dependencies. For instance, in the APACHE

ROLLER28 mailing list we found a discussion 29 on whether upgrading or not a dependency
towards APACHE LOG4J. In particular, one of the ROLLER developers asked if it is the case
to upgrade the release of LOG4J used in ROLLER:

log4j is up to 1.2.12. We’re still using/distributing 1.2.4 in the trunk (bound for
2.0). I think we should upgrade to 1.2.12 in the trunk.

The answer came from another ROLLER developer:

27http://tinyurl.com/qjyw6u2
28http://roller.apache.org/
29http://tinyurl.com/qz254l8

98

4.3. Analysis of the Results

I recently tried to upgrade to 1.2.12 and found that there were some incompat-
ibilities with my config file. I forget what they were - but it basically wasn’t a
simple upgrade. For that reason, I’m currently using 1.2.11.

Thus, even if the ROLLER developers were going to issue their new release 2.0 and were
conscious of using an old LOG4J release, the choice was to not risk to perform a tricky
upgrade.

The use tag has been assigned to 6% of the analyzed discussions, dealing on how to use
the library in the client, while only 3% of them were tagged with the break tag, indicat-
ing discussions aimed at avoiding changes that could break the dependency. These discus-
sions generally happen in the library projects’ communication channels. For instance, in the
APACHE GERONIMO mailing list we found a discussion30 where a developer was alerting
about the possible issues that could be caused by the removal of a dependency in the project:
This change removed Sun SAAJ implementation dependency. That dependency is currently
needed and should not be removed (I’m pretty sure it will break CXF). Note that APACHE

CXF31 is a client project using GERONIMO and, among the developers of these two projects,
we found a dense network of communication mostly carried out by developers in overlap
between the two projects. We depicted this network in Fig. 4.8, where CFX’s developers
are represented with blue nodes, GERONIMO’s developers with orange nodes, and develop-
ers in overlap between the two projects are colored in yellow. An edge exists between two
developers if they exchanged at least two messages (i.e., the communication between them is
not occasional). Blue edges are messages exchanged in the CFX’s communication channels,
while the red ones are messages exchanged in the GERONIMO’s communication channels.
From Fig. 4.8 it is interesting to notice that (i) most of the developers in overlap are hubs
exchanging messages with several other developers, (ii) most of the communications between
the two projects passes through the developers in overlap (i.e., the yellow nodes).

Finally, 36% of discussions were tagged as other, because they were related to topics that
cannot be placed in the previous discussed tags. Examples are discussions related to missing
references in the release bundles, to the possibility of whether or not providing support to
old releases of some clients, or to legal issues. An example was a discussion started by an
APACHE APERTURE developer:

Hello Tika!
Hello Aperture!

30http://tinyurl.com/opmlu8z
31http://cxf.apache.org/

99

How Developer Communications are Used to Support Third-Party Libraries

Figure 4.8: Communication network between Geronimo and CFX developers. CFX’s developers are shown in blue,
Geronimo’s developers in orange, while yellow circles are developers overlapping between the two projects.

We (the Aperture project) have recently updated the pdfbox to the current trunk
version. It seems that they’ve introduced a new dependency on the Java Ad-
vanced Imaging API (JAI). The problem is that JAI imposes certain constraints
on redistribution. [...]

RQ3 summary: The manual analysis performed in the context of RQ3 showed
that developers actively discuss about dependency management. Generally, this
discussion is carried out by developers of the client projects mainly discussing about
problems due to the (fix) of dependencies, and of the possibility to whether or not
upgrading a dependency.

4.4 Threats to Validity

This section discusses the threats that can affect the validity of the achieved results.
Threats to construct validity concern the relation between the theory and the observa-

tion. They can be mainly due to imprecisions in the measurements we performed. This is a

100

4.4. Threats to Validity

summary of the main sources of imprecision:

• The mapping between dependencies declared within a project and other projects was
performed using a set of heuristics, as explained in Section 4.2.2. To cope with the
imprecision of such heuristics, results were manually verified.

• In the analysis of the evolution of active developers in RQ1 and RQ2, we cannot ex-
clude that the projects also involved other contributors whose activity is not evident
from the versioning system commits.

• The analysis of the nature of changes performed in RQ2 involved a manual classifica-
tion of releases. This could have lead to some subjectivity in the classification. To avoid
that, two of the authors performed the classification independently, and then discussed
cases where their choices were inconsistent.

• The analysis of developers’ communication performed to address RQ3 has been con-
ducted by considering, as communication means, project mailing lists and issue reports.
In many projects—and especially in worldwide-distributed open source projects like
the ones we analyzed—it is a consolidated practice to communicate through mailing
lists and issue trackers. However, we are aware that there could still be some hidden
communication [34] we might have missed in our analyses. A different matter con-
cerns the manual tagging of such a communication which, due to the large number of
emails/issues to be analyzed (7,695), was split between the two inspectors. Although
we are aware that mistakes could have occurred, both inspectors agreed on guidelines
to perform a classification, and they discussed together unclear cases.

Threats to internal validity concern factors internal to the study that could influence our
results. Such kind of threats typically do not affect exploratory studies. The only case worth-
while of being discussed is about RQ2. In the first case, although we have found some
correlation between certain kinds of changes and upgrades decisions, we cannot claim there
is a cause-effect relation. In addition to that, the large manual analysis of developers’ com-
munication conducted in the context of RQ3 provided a strong qualitative support to the
quantitative findings of RQ2.

Threats to conclusion validity concern the relationship between the treatment and the
outcome. The analyses performed in this study mainly have an observational nature, although
we used, where appropriate (RQ2), statistical procedures and effect size measures to support
our claims.

Threats to external validity concern the generalizability of our findings. Such a generaliz-
ability is clearly limited to the ecosystem being analyzed, i.e., Apache, and specifically Java

101

How Developer Communications are Used to Support Third-Party Libraries

projects of the Apache ecosystem. Also, in terms of assessing dependency upgrades, such
assessment is confined to within-ecosystem dependencies, as we are not interested to analyze
dependencies to projects that are not part of the ecosystem. Future studies need to be done
to investigate upgrades with respect to external dependencies too, and to repeat the study on
other ecosystems.

4.5 Related work

In this section, we discuss the related literature, focusing our attention on (i) work studying
software ecosystems and (ii) work observing the impact on software evolution and stability
of changes/deprecations of APIs.

4.5.1 Analysis of Software Ecosystems

In the last decade several software ecosystems have been studied from different perspectives.
Table 4.3 reports these studies, classifying them by (i) the ecosystem being studied, (ii) the
source of information exploited, (iii) the objectives of the study, and (iv) the main findings.

One of the first software ecosystems subject of several empirical studies has been the
Debian Linux distribution [96–98]. Specifically, Godfrey et al. [96] analyzed the size of
the Linux operating system Kernel, observing a super-linear rate growth for several years.
Gonzalez-Barahona et al. [97] found that the Debian Linux distribution has been doubling in
size every two years while the average size of its packages remained stable over time. Also,
they observed as the number of dependencies between packages increased exponentially.
German et al. [98] proposed a methodology and visualization tool aimed at supporting the
study of inter-dependencies in complex software systems. The tool has been used to analyze
the dependencies between projects in the Debian Linux distribution. Capturing dependencies
between projects in an ecosystem is far from trivial [111] and it is the reason why several
authors focused their attention on methods for the extraction of dependencies in large soft-
ware ecosystems [98, 99]. Similarly to what done in other studies, in the context of our work
we also exploited specific heuristics (see Section 4.2.2) to identify the dependencies between
projects.

Another software ecosystem that has been studied by several authors is the Eclipse IDE.
Wermelinger et al. [100, 101] analyzed the evolution of the Eclipse’s architecture and found
that the success as application framework for the Eclipse SDK mainly depends from the fact
that it “follows several practices that support sustainable architectural evolution” [101]. In
particular, the Eclipse developers manage APIs carefully, avoiding to break existing APIs

102

4.5. Related work

Source Objectives Findings Ref
APACHE ECOSYSTEM

Versioning System and
Mailing lists

Defining a set of invariant metrics
to detect “stagnant projects”.

Stagnant projects can be identified by measuring the ratio
of the e-mail exchanged in mailing lists and the number
of commits.

[95]

Versioning System, Re-
lease Notes, Issue Track-
ers, and Mailing lists

Focus on projects dependency man-
agement.

Clients tend to upgrade their dependencies when libraries
are subject to bug fixes, while changes to interfaces make
the upgrade less appealing. Most of the times the impact
of upgrades is well-confined.

Our Work

LINUX ECOSYSTEM
Versioning System Analysis of the evolution of the

Linux Kernel.
The size of the Linux Kernel has been growing at a super-
linear rate for several years.

[96]

Versioning System Analysis of the evolution of the De-
bian Linux distribution

The overall size has been doubling every 2 years, while
the average size of packages remained stable. Instead, the
number of dependencies increased exponentially.

[97]

Versioning System Analysis of dependencies in the De-
bian Linux distribution.

A methodology and visualization for studying inter-
dependencies of a complex software system.

[98]

SQUEAK ECOSYSTEM
Versioning System Recover dependencies between the

software projects of the Squeak
ecosystem.

Accurate detection of dependencies for Smalltalk. [99]

Versioning System Analysis of API changes in a soft-
ware ecosystem.

API changes caused by deprecation can have a very
large impact on the ecosystem in terms of the number of
changes needed to fix broken dependencies.

[88]

ECLIPSE ECOSYSTEM
Versioning System Analysis of the Eclipse architec-

ture.
The development follows a systematic process and there
is a stable architectural core that remains since the first
release.

[100, 101]

Versioning System Analysis of the evolution of Eclipse
core plugins.

Eclipse plugins adhere to the laws of continuing change
and growth, but not to the law of increasing complexity.

[102]

Versioning System Analysis of the evolution of third-
party plugins.

Third-party plugins that depend from stable and sup-
ported Eclipse APIs have a higher compatibility success
rate than plugins depending on discouraged and unsup-
ported APIs.

[90]

Mailing lists and issue
trackers

Analysis of developers’ productiv-
ity.

Adding new features to Eclipse slows down the bug fixing
process.

[103]

GNOME ECOSYSTEM
Versioning System Analysis of the active developers. The number of active developers increased until 2003, re-

mained stable until the 2008, and then decreased.
[94]

Versioning System Analysis of the ecosystem evolu-
tion.

A list of practices that could benefit both open and com-
mercial software development organizations.

[104]

Mailing lists and issue
trackers

Analysis of the activities on and
contributors of the software ecosys-
tem.

GNOME contains both paid contributors and volunteers.
Coding is the most preeminent activity in the ecosystem.

[105–107]

Versioning System Analysis of cloning and copy-
ing operations between GNOME
Projects.

Larger clones exist between the sub-projects of GNOME
and more than 60% of the clone pairs can be automati-
cally separated into original and copy.

[98]

Versioning System,
Mailing lists and Issue
Trackers

Analysis of social processes in the
ecosystem.

Participants in such ecosystems may be able to use a sig-
nificant amount of transferrable knowledge when moving
between projects in the ecosystem and, thereby, skip steps
in the “onion model”

[108]

GNU R ECOSYSTEM
Versioning System and
Mailing lists

Analysis of the differences between
code characteristics of core and
user-contributed packages.

User-contributed packages has been growing steadily
since the R conception at a significantly faster rate than
core packages.

[91]

GURUX ECOSYSTEM
Versioning System and
Mailing lists

Analysis of the evolution. Supporting processes, guidelines and best practices for
building open source communities.

[109]

FIREFOX, UNITY, AND GOOGLE CHROME ECOSYSTEMS
Versioning System Analysis of how the software li-

censes are reported in software
ecosystems.

Software component licenses and the architectural com-
position of a system help to better define the software
ecosystem “niche” in which a given system lies (i.e., the
license is wrong).

[110]

Table 4.3: Studies that analyzed software ecosystems.

when issuing new releases. Mens et al. [102] found that the Eclipse core plugins adhere

103

How Developer Communications are Used to Support Third-Party Libraries

to the laws of continuing change and growth, but not to the law of increasing complexity.
Businge et al. [90] analyzed the dependencies and the survival of 467 Eclipse third-party
plugins. They found that plugins depending only on stable and supported Eclipse APIs have
a very high source compatibility success rate. This means that third-party plugins that depend
from stable and supported Eclipse APIs have a higher source compatibility success rate than
plugins depending on discouraged and unsupported Eclipse non-APIs. In addition, Businge
et al. found that the majority of plugins hosted on SourceForge32 do not evolve beyond the
first year of release.

GNOME is another very well investigated software ecosystem [94, 104–107, 112]. Ger-
man et al. [104] distilled a list of practices that could benefit both open and commercial soft-
ware development organizations by studying the GNOME ecosystem. For example, a careful
coordination of the development activities between the sub-projects belonging to the ecosys-
tem can be the one of the keys for the success of the different projects. Mens et al. [105,107]
studied the GNOME mailing lists and issue trackers observing that GNOME contains both
paid contributors and volunteers. Also, coding seems to be the most preeminent activity in
the ecosystem, followed by activities such as translation and development documentation.
In addition, members of the GNOME community tend to specialize themselves in a limited
number of activity types [105]. Goeminne et al. [94] observed in the GNOME ecosystem
a variation trend for the number of active developers similar to the one we identified in the
Apache Ecosystem. Specifically, after an initial increase of active developers in the 1997-
2003 time window, they found the developers base to be almost stable until 2008. Then, they
observed a decrease in the number of active developers up to date.

German et al [91] studied the evolution of the statistical computing project GNU R, with
the aim of analyzing the differences between code characteristics of core and user-contributed
packages. They found that the ecosystem of user-contributed packages has been growing
steadily since the R conception at a significantly faster rate than core packages, yet each
individual package remains stable in size.

Scacchi et al [110] examined how the software licenses are reported in software ecosys-
tems and in particular, observe how software component licenses and the architectural com-
position of a system help to better define the software ecosystem “niche” in which a given
system lies (i.e., the license is wrong).

Other than the analysis of ecosystems evolution, social/community aspects of ecosystems
(for example bug reports and/or mailing list traffic between developers teams) have also been
analyzed [103, 106, 108, 109]. Kidane et al. [103] found that adding new features to Eclipse
slows down the bug fixing process.

32http://sourceforge.net/

104

4.6. Summary

Yu et al. [113] studied the mailing lists of the Linux kernel, to analyze different ecosystem
collaboration patterns between companies. Jergensen et al. [108] instead, analyzed multiple
systems which have “common underlying components, technology, and social norms”. They
observed how participants in such ecosystems may be able to use a significant amount of
transferrable knowledge when moving between projects in the ecosystem and, thereby, skip
steps in the “onion model”33

Annosi et al. [114] proposed a framework to support developers in the upgrade of third-
party components. The decision is driven by various factors, partially related to the kind
of change occurred in the component (as mined from release notes or issue trackers), and
partially on expert judgements collected within the company.

Gala et al. [95] also analyze the Apache ecosystem proposing a set of “invariant metrics”
in the domain of software projects. They found that metrics measuring the proportion (or
ratio) of the e-mails exchanged in mailing lists and the total number of commits performed
by developers can be useful to identify stagnant projects and projects in danger of stagnation.
In our study, we also observed that project’s stagnation is one of the factors that reduces the
active developers’ base.

4.6 Summary

This study investigated on the evolution of project inter-dependencies in the Java subset of
the Apache ecosystem, comprising a total of 1,964 releases of 147 projects, for 14 years.
First, we investigated how the ecosystem has grown over time in size, number of projects,
dependencies between projects, and number of developers. After that, we analyzed the factors
that could have influenced the upgrade (or not) of a dependency between a project and a
library it uses. Also, we qualitatively investigated, by looking into mailing list and issue
report discussions, how developers discussed the opportunity to perform an upgrade and its
possible impacts/risks.

The study results indicated that:

• The ecosystem size exponentially grows over time, and consequentially the depen-
dencies between projects grow too. The number of active developers involved in the
project grows until a certain year (2006). Then, it remains stable because most of the
new projects (many of which part of the APACHE COMMONS) involve developers al-
ready active in the ecosystem). Finally, over the last few years (since 2011) we observe

33The onion model is a socialization process where newcomers join a project by first contributing through mailing
list discussions and bug trackers and they advance to more important roles contributing where they can improve the
code and making design decisions.

105

How Developer Communications are Used to Support Third-Party Libraries

a decrease in the number of active developers. This can be explained because very few
projects have been added to the ecosystem during such a period, while the size growth
is mainly due to the evolution of existing projects. The latter could, however, concern
only some specific features and therefore be performed by a subset of developers only.

• For what concerns the factors that could have influenced dependency upgrades, we
found that this does not really depend on project-level characteristics such as project
size. Moreover, pairs of projects having a dependency share a higher number of de-
velopers as compared to pairs of projects do not having a dependency. These findings
have been reflected from the discussions developers had over mailing lists and issue
trackers.

This work has mainly an observational nature, i.e., it aimed at empirically investigating a
phenomenon—dependency upgrades in a software ecosystem—-from both quantitative and
qualitative point-of-view. Nevertheless, there are different possible uses one can make of the
results of this study. First, the study highlights that the dependency phenomenon has an expo-
nential growth and should therefore carefully be considered by developers contributing to the
ecosystem. Second, it provides an overview of possible factors that could influence depen-
dency upgrades, with indications of the role played by such factors in the Apache ecosystem,
and of how the main reasons for upgrading or not were discussed by developers. This means
that developers discussions are massively characterized by dependencies discussion of de-
pendent sub-projects. Such information can be used to define an approach to avoid changes
that could break the dependency with third-party libraries.

106

Part II

How Developers Browse and
Understand Software Artifacts

107

Code comprehension activities often start by reading source code, and continue by ab-
stracting away and browsing software artifacts at higher level of abstraction [115]. This part
of the thesis investigates, at different levels of abstraction, how developers perform compre-
hension tasks. Specifically, in Chapter 5 we analyze navigation patterns developers follow
across use cases, class diagrams, sequence diagrams, and source code. This analysis can be
useful to build recommenders to better navigate the documentation during maintenance activ-
ities. Results indicate that, although newcomers spent a conspicuous proportion of the avail-
able time by focusing on source code, they browse back and forth between source code and
class/sequence diagrams. Less frequently, developers—especially more experienced ones—
follow an “integrated” approach by using different kinds of artifacts. Such information can
be seen as a starting point to built recommenders to better navigate the documentation dur-
ing maintenance activities. When it comes to understanding source code, in Chapter 6 we
investigate how developers summarize different code elements, i.e., what terms do they use.
Specifically, we investigate whether the words used to summarize a class are high-frequency
words, or belong to a high-frequency concept. Also, we investigate what kinds of terms do
developers use, e.g., comments, words from method signatures, attribute names, etc.

109

110

Chapter 5

An Empirical Investigation on
Documentation Usage Patterns in
Maintenance Tasks

Contents
5.1 Motivation: help newcomers to properly navigate documentation dur-

ing maintenance activity . 114

5.2 Study Definition and Planning . 115

5.2.1 Context Selection . 115

5.2.2 Research Questions . 116

5.2.3 Study Procedure and Material 116

5.2.4 Data Collection . 118

5.2.5 Analysis Method . 119

5.3 Analysis of the Results . 121

5.3.1 RQ1: How much time did participants spend on different kinds of
artifacts? . 122

5.3.2 RQ2: How do participants navigate different kinds of artifacts to
identify code to be changed during the evolution task? 126

5.4 Threats to Validity . 132

5.5 Related work . 133

5.5.1 Impact of UML documentation on Maintenance Tasks 133

5.5.2 Studies about Developers’ Behavior during Maintenance Tasks . 134

111

An Empirical Investigation on Documentation Usage Patterns in Maintenance Tasks

5.6 Summary . 135

112

In the Chapter 4 we investigated (i) how sub-projects evolve over time when an ecosys-
tem grows, (ii) what are the product and process factors that can likely trigger dependency
upgrades and (iii) how developers discuss the needs and risks of such upgrades.

Hence, software ecosystems consist of multiple software projects, often interrelated by
means of dependency relations. When one project undergoes changes, other projects may
decide to upgrade their dependency. For example, a project could use a new version of a
component from another project because the latter has been enhanced or subject to some bug-
fixing activities. During this process developers teams between sub-projects of the ecosystem
discuss and manage dependencies in order to avoid bugs, and release new version in easier
way.

However, when newcomers join a software project and perform a software maintenance
task, they need to identify artifacts—e.g., classes or more specifically methods—that need
to be modified. To this aim, they can browse various kind of artifacts, for example use case
descriptions, UML diagrams, or source code.

This Chapter reports the results of a study—conducted with 33 participants—aimed at
investigating (i) to what extent newcomers use different kinds of documentation when identi-
fying artifacts to be changed, and (ii) whether they follow specific navigation patterns among
different kinds of artifacts.

Results indicate that, although newcomers spent a conspicuous proportion of the available
time by focusing on source code, they browse back and forth between source code and either
static (class) or dynamic (sequence) diagrams. Less frequently, developers—especially more
experienced ones—follow an “integrated” approach by using different kinds of artifacts. Such
information can be seen as a starting point to built recommenders in help newcomer to choice
appropriate patterns in navigate software documentation when apply maintenance tasks.

113

An Empirical Investigation on Documentation Usage Patterns in Maintenance Tasks

5.1 Motivation: help newcomers to properly navigate doc-
umentation during maintenance activity

Maintenance tasks are generally facilitated when software documentation (e.g., the require-
ments specification, design document, test report, and user manual) is available [116–118].
Indeed, having documentation available during system maintenance reduces the time needed
to understand how maintenance tasks can be performed by approximately 20% [118]. In
addition, besides time reduction, documentation allows developers to find better and more
accurate technical solutions to a given maintenance task [118].

Although several studies have shown the usefulness of documentation during mainte-
nance tasks (see e.g., [116–121]), it is still unclear how such documentation is browsed by
developers to understand how the system should be modified to implement a specific change.
At one extreme, one can argue for using all the available documentation, as each artifact
is equally useful, since it provides a description of the system with different levels of de-
tails. Also, the documentation could be browsed starting from HLA (e.g., use cases) to LLA
(e.g., dynamic models). Even if there is an anecdotal evidence that such an approach could
work, without a proper empirical investigation it remains only a conjecture. Also, differ-
ent developers—with different skills and experience—might follow different paths. Thus,
on one hand, guessing a priori navigational paths is quite challenging. On the other hand,
understanding such paths is relevant not only to highlight the importance of high-level docu-
mentation, but also to help tool developers enhancing modelers and Integrated Development
Environments (IDEs) to better support program comprehension activities by facilitating ef-
fective and efficient artifact navigation and browsing.

All these considerations motivate our work. We conduced a study, involving 33 par-
ticipants (among undergraduate and graduate students from different universities) aimed at
analyzing to what extent developers use different kinds of documentation when identifying
pieces of code (e.g., methods) to be changed and whether they follow specific navigation
paths among different kinds of artifacts. In the context of our study, we asked participants
to perform 8 different maintenance tasks on a Java software system. It is important to note
that the subjects considered in our study are not familiar with source code because we want
to simulate the scenario in which newcomers that are joining a software project are applying
a maintenance tasks. Besides source code, participants had available use case descriptions,
sequence diagrams, class diagrams, and Javadoc. We used an Eclipse plugin to capture how
much time was spent by participants on different artifacts, and how they navigated from an
artifact to another.

The obtained results indicated that—even if a substantial proportion of time (about 80%

114

5.2. Study Definition and Planning

on average) is spent on source code, participants also browsed back and forth between source
code and either static (class) or dynamic (sequence) diagrams, the latter being more used
than the former. Less frequently, participants—and in particular those with a higher degree
of experience, i.e., graduate students—follow an “integrated” approach, in which different
kinds of artifacts were used, for example starting the task from use cases, then browsing
sequence and/or class diagrams before accessing the source code. Such results could be used
to enhance IDEs with a recommendation system able to suggest a particular navigation path
aiming at facilitating the browsing of the available documentation. Such a recommender
might be particular useful in large systems where the browsing of myriad software artifacts
could represent an obstacle instead of a facilitation when performing the maintenance task
[122, 123].

This Chapter is organized as follow. Section 5.2 presents the definition and planning of
our study, while Section 5.3 discusses the results achieved. Section 5.4 presents the threats
that could affect the validity of our study. Finally, after a discussion of the related literature
(Section 5.5), Section 5.6 summaries the results of the empirical study.

5.2 Study Definition and Planning

This section describes the design and planning of the our empirical study. The goal of the
study is to observe how developers browse different kinds of software artifacts, with the pur-
pose of understanding how they build knowledge needed to deal with a maintenance task
and, specifically, to identify classes and class elements (methods and attributes) that need to
be changed when performing a maintenance task. The perspective is of researchers interested
to identify relevant navigation paths across artifacts that result helpful during a software evo-
lution task. This result can be used, for example, to build smart recommenders that guide
developers by suggesting navigations across artifacts or to better organizing and indexing the
documentation available for a software project.

5.2.1 Context Selection

The study involved 33 participants, selected entirely on a voluntary basis—i.e., using a con-
venience sampling—mainly among undergraduate students of the Computer Science Degree
at the University of Molise, and among master students, PhD students (including visiting stu-
dents) of the Computer Science Engineering Degree of the University of Sannio. Overall, 11
Bachelor students, 18 Master students, and 4 PhD students participated to the study.

The objects which the tasks were performed on are use case descriptions, design level
sequence and class diagrams, Javadoc, and Java source code files of a school automation

115

An Empirical Investigation on Documentation Usage Patterns in Maintenance Tasks

system, named SMOS, developed by graduate students at the University of Salerno (Italy).
SMOS offers a set of features aimed at simplifying the communication between the school
and the student’s parents. The system is composed of 121 classes with their respective
Javadoc for a total size of 23 KLOC. The documentation is represented by 67 use cases,
72 design level sequence diagrams, and 6 design level class diagrams. Each class diagram
represents the relationships between all the classes involved in a specific subsystem, e.g.,
teaching management.

In the context of our study, we asked participants to perform 8 different maintenance tasks
on SMOS, of which 3 were bug-fixing tasks, 3 related to add a new feature, and 2 related to
improve existing features, i.e., performing a perfective maintenance task.

5.2.2 Research Questions

The study aims at investigating the following research questions:

• RQ1: How much time did participants spend on different kinds of artifacts? This
research question aims at analyzing how much time participants spent on different
kinds of artifacts. On the one hand, artifacts used for less time can be thought of being
less useful. On the other hand, some artifacts intrinsically require more time to be read
(e.g., source code) while for others (e.g., use cases, sequence diagrams) a quick look
may just suffice to provide a useful piece of information.

• RQ2: How do participants navigate different kinds of artifacts to identify code to be
changed during the evolution task? This research question is the core of our study
aimed at analyzing the sequences of interactions made with different artifacts. In par-
ticular, we will investigate (i) how do participants start the task, (ii) what kinds of
artifacts do they browse before getting to the source code, and (iii) whether there are
frequent browsing patterns, e.g., repeated navigation back and forth between source
code and class diagrams.

For each research question, we also analyzed the impact of participants’ experience on the
use and the navigation of the software documentation.

5.2.3 Study Procedure and Material

Before the study, we explained to participants what we expected them to do during their
tasks. Specifically, we asked them to identify methods and attributes to be changed when
performing each change task. We provided an overview of what kinds of artifacts they have
available, briefly summarizing the purpose of each of them.

116

5.2. Study Definition and Planning

In SMOS a registered user can have six different roles: Admin,
Teacher, Student, Parent, Janitors, and Director. Suppose that we
want to remove the ”Director” role, which changes do you need to
made on source code? Specify for each involved class/method
the changes you would apply.

TASK DESCRIPTION

Write the list of methods modified to perform this task specifying
h o w y o u m o d i fi e d t h e s e m e t h o d s . F o r e x a m p l e :
”application.userManagement.UpdateUser.doGet”. I added the
line of code ”x=3;” after the line of code ”y++;”.

QUESTIONS

Write the list of attributes modified to perform this task.
For example: ”bean.User.UID”.

Figure 5.1: Example of task description and related questions.

After illustrating the study, we gave participants up to 3 hours of time to perform the task.
Note that it was not our intention to measure the task efficiency, hence we were not strict with
the time. We only made sure participants properly performed the task, without collaborating.

We provided each participants with a customized Eclipse installation containing:

• The Java Development Environment (JDT) with the SMOS software system already
imported together with its documentation, i.e., sequence diagrams, class diagrams, use
cases, and Javadoc.

• FLUORITE (Full of Low−level User Operations Recorded In The Editor1), an Eclipse
plug-in able to capture all of the low-level events when using the Eclipse editors. FLU-
ORITE keeps track of all of the events that occur in the Eclipse editors also storing
timestamps for each event. All data is saved in an XML log file.

• The Pdf4Eclipse2 plug-in (used to visualize use cases, sequence diagrams, and class
diagrams).

1http://www.cs.cmu.edu/ fluorite/
2http://borisvl.github.io/Pdf4Eclipse/

117

An Empirical Investigation on Documentation Usage Patterns in Maintenance Tasks

• An Eclipse HTML Editor3 plug-in, used to visualize the Javadoc files.

Also, we provided participants with an URL of a page on ESurveysPro4, a online survey
tool we used to collect participants’ answers.

During the study, we instructed participants to access the ESurveysPro page and, for each
of the eight tasks to be performed, to work following this procedure:

[1] access the page describing the task, and read the task description

[2] then, use Eclipse to find a solution for the task

[3] after the task has been performed, answer the questions in the opened ESurveysPro
page. For each task, participants had to provide, using two different form fields, the
list of methods and instance variables (attributes) that need to be modified. Fig. 5.1
shows an example of task description and questions being asked for the task. For each
question examples of answers are provided. We made clear to participants that example
answers are not related to the task, thus they are not valid answers.

After having completed the 8 tasks, participants had to fill a post-study questionnaire. The
post-study questionnaire asked participants an opinion about the usefulness of the various
kinds of artifacts, using a Likert scale [124] ranging between 1 (totally useless) and 5 (very
useful). We also asked participants to provide a comment for the rank assigned to each kind
of artifact.

5.2.4 Data Collection

After tasks were completed, we collected from each participant (i) the XML logs generated
by FLOURITE; and (ii) the answers provided on ESurveysPro. Concerning FLUORITE logs,
they have been parsed through a Java tool developed on purpose. The tool extracts, for each
task performed by each participant, the ranked list of documents explored during such a task
together with the time spent on each document. An example of generated list is:

UseCase(27)→ SequenceDiagram(48)→ Code(82)

indicating that the participant started by reading an use case description for 27 seconds, mov-
ing then to a sequence diagram for 48 seconds, and finally access the source code for 82
seconds.

3http://amateras.sourceforge.jp/cgi-bin/fswiki_en/wiki.cgi?
page=EclipseHTMLEditor

4http://www.esurveyspro.com/

118

5.2. Study Definition and Planning

We pruned out from such logs browsing activities shorter than 5 seconds. Although this
would remove some potentially useful information, we assume that such short activities are
mainly due to the need for scrolling across various windows in the IDE.

5.2.5 Analysis Method

To answer RQ1, we measure (in seconds) the time spent by participants on each of the arti-
fact types considered in our study (i.e., the four different documentations plus source code).
We also analyze the scores provided by the participants in the post-survey questionnaire to
indicate their perceived usefulness of the exploited artifacts. Results are reported in terms of
descriptive statistics and boxplots.

Besides analyzing the whole dataset collected during our study, we investigate whether
participants with different levels of experience (graduate vs. undergraduate students) use
artifacts differently. Due to the limited number of PhD students, and also for the sake of sim-
plicity, we just distinguish between undergraduate (i.e., bachelor) and graduate (i.e., Master
or PhD) students.

In addition to descriptive statistics and boxplots, we use Mann-Whitney test [81] to com-
pare the proportion of time spent on each kind of diagram by participants having different
levels of experience. We also evaluate the magnitude of the observed differences using the
Cliff’s Delta (or d), a non-parametric effect size measure [82] for ordinal data. We followed
the guidelines in [82] to interpret the effect size values: small for d < 0.33 (positive as well
as negative values), medium for 0.33 ≤ d < 0.474 and large for d ≥ 0.474.

Still in the context of RQ1, we verify if there is a correlation between the kind of artifacts
exploited by participants and the correctness of the performed tasks. Note that our study does
not aim at investigating whether the usage of different artifacts influences the task correctness.
This cannot be done, because it would have required a specific controlled experiment with
participants receiving different treatments, e.g., using some diagrams only, or “forced” to
follow specific navigational paths only. Instead, this analysis should be considered as a form
of sanity-check, to determine whether participants performed tasks seriously and whether
participants using more specific kinds of artifacts could have suffered particular problems.

To measure the completeness and correctness of the tasks performed by each participant
(i.e., her ability in correctly individuating the code components impacted by a maintenance
activity), we used a combination of two well-known Information Retrieval (IR) metrics, recall
and precision [80]. Recall measures the percentage of code components actually impacted
by a maintenance activity correctly identified by a participant, while precision measures the
percentage of identified components that are actually impacted. Since recall and precision
measure two different (but related) concepts, we use their harmonic mean (i.e., F-measure

119

An Empirical Investigation on Documentation Usage Patterns in Maintenance Tasks

[80]) to obtain a balance between them when measuring task correctness.
The correlation between the type of artifacts exploited by participants and the correctness

and completeness of the performed tasks is computed through (i) the Spearman correlation,
performed between the time spent by participants in each task on each type of artifact and the
correctness achieved in the task, and (ii) by building a logistic regression model for correct-
ness based on the use (or not) of different kinds of artifacts.

Concerning RQ2 we extracted, using the data derived by the FLOURITE plugin, infor-
mation concerning how participants navigate different artifacts, and specifically:

• What artifacts did participant looked first, i.e., where the comprehension task started.
Usually, one assumes this starts from requirements/use cases, although there are devel-
opers that start from source code directly.

• What artifacts did participants browse before getting to source code. This could poten-
tially indicate the pattern followed to locate the source code element to be changed.

• What is the likelihood of making a transition from one kind of artifact to the other. This
can likely indicate how the information gained by browsing a certain kind of artifact
raises the need for accessing another kind of artifact, e.g., browsing source code after
accessing sequence or class diagrams, or else looking at static models after dynamic
models.

• What are the most frequently followed patterns. This was done by matching regular
expressions of length varying from two to four onto the mined logs, and determining for
each pattern whether it was iterated, e.g., participants could go back and forth between
source code and class or sequence diagrams repeatedly.

Finally, we investigated whether participants with different levels of experience followed
different patterns and whether following certain patterns can influence the task correctness.

All statistical analyses of this study have been performed using the R environment [74].
For all statistical procedures, we assumed a significance level of 95%.

Replication package To facilitate the replication of this study, a complete replication
package is available5. It includes (i) an Eclipse installation bundle, with all the exploited
plug-ins installed and the object system SMOS (source code and other artifacts) already im-
ported, (ii) the task description for all 8 tasks, (iii) the post-study questionnaire, and (iv) the
FLUORITE logs for the 33 participants. Also, the package includes the working data set with
our study results.

5http://distat.unimol.it/reports/icsm-docs/

120

5.3. Analysis of the Results

Table 5.1: Recall, Precision, and F-measure achieved by participants when performing the tasks.

Dataset Recall Precision F-measure

Undergraduates
Mean 0.65 0.79 0.71
Median 0.81 1.00 0.82
St. Dev. 0.40 0.38 0.37

Graduates
Mean 0.67 0.88 0.76
Median 0.88 1.00 0.93
St. Dev. 0.37 0.31 0.35

All
Mean 0.67 0.85 0.75
Median 0.88 1.00 0.86
St. Dev. 0.38 0.34 0.36

Table 5.2: Use (percentage of tasks and time spent) of different kinds of artifacts: descriptive statistics.

Artifacts
Tasks (%) Tasks (%) Tasks (%) Time spent (all data, %)

(All) Undergrad. Graduate mean 1Q median 3Q

Use case 33 28 36 3 0 0 2
Sequence Diagram 72 68 74 10 0 7 16
Class Diagram 60 49 66 13 0 4 15
Javadoc 15 21 11 2 0 0 0
Source Code 100 100 100 72 66 79 89

5.3 Analysis of the Results

Before answering the research questions formulated in Section 5.2.2, it is important to verify
whether participants seriously performed the assigned tasks. To this aim, Table 5.1 reports the
average values for recall, precision, and F-measure achieved by undergraduate and graduate
students, as well as when considering the entire dataset. Results show that participants were
able to achieve quite good performances, with an average F-measure of 0.75. This sanity
check makes us confident that participants seriously performed the assigned tasks. Also, as
expected, graduate students achieved, on average, better performances than undergraduate
students (+5% in terms of F-measure).

121

An Empirical Investigation on Documentation Usage Patterns in Maintenance Tasks

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●
●
●

●

●

●

●

●

●

●●

●

●

●●

●●●

●

●

●
●●
●
●

●

●●

●●

Ug. Gr. Ug. Gr. Ug. Gr. Ug. Gr. Ug. Gr.

0
20

40
60

80
10

0

%
 o

f t
ot

al
 ti

m
e

UseCase SequenceD ClassD Javadoc SourceCode

Figure 5.2: Usage (in percentage) of different kinds of artifacts. Ug = undergraduate students, Gr = graduate stu-
dents.

5.3.1 RQ1: How much time did participants spend on different kinds of
artifacts?

Table 5.2 reports the percentage of tasks in which each kind or artifact has been used (for
the entire dataset as well as by separately considering participants with different levels of
experience), and descriptive statistics about the percentage of time spent on various kinds of
artifacts (by considering the entire dataset). Fig. 5.2 shows boxplots of such percentage for
different levels of experience.

If considering the whole dataset, and analyze the time spent on artifacts (right-side of
Table 5.2), results indicate that participants spent most of their time (72% on average) on

122

5.3. Analysis of the Results

source code. This result is mainly due to two reasons. First, even when participants were
able to identify the impacted components by analyzing documentation artifacts we observed
that they checked-back in the source code that the identified methods/attributes were actually
there and really impacted by the maintenance activity to perform. This suggests a kind of
distrust with respect to documentation artifacts, as also confirmed by the fact that source
code has been used in 100% of the tasks. Second, source code clearly requires more time
to be read and understood as compared to the artifacts present in the documentation. In
particular, participants spent, on average, 154 seconds on each source code file, compared to
the 70 spent on a class diagram, 49 on a Javadoc file, 35 on a sequence diagram, and 34 on a
use case.

If we look at the percentage of tasks in which each kind of artifact was used at least once
(left-side of Table 5.2), we notice that—besides source code, obviously used in 100% of the
tasks—the most commonly used documentation artifacts are class and sequence diagrams.
The latter were used in 72% of the task. On such diagrams, participants spent on average
10% of their time (median=7%). Only one of the 33 participants did not exploit at all se-
quence diagrams during the tasks and justified such a choice in the post-study questionnaire:
“sequence diagrams would be useful only if class diagrams were not present”. However, as
we will see shortly, this is an isolate point-of-view.

As for class diagrams, they were used in 60% of tasks and participants spent, on average,
15% of their time on them (median=4%). This strong misalignment between the mean and
the median values for class diagrams highlights that, while generally they are used for a lower
proportion of time as compared with sequence diagrams, some participants spent a very high
proportion of their time on class diagrams, as also shown by the outliers reported in Fig. 5.2.
Two participants did not use at all class diagrams in the tasks.

Turning to use cases, they were used in 33% of tasks by participants, which focused on
them just the 3% of their time, on average. As said before, participants spent just 34 seconds,
on average, on each consulted use case against, for instance, the 154 spent on each source
code file. Among the 33 participants, three of them did not access at all use cases.

Finally, Javadoc documentation was not used a lot by participants of our study. They
accessed Javadoc in just 15% of the tasks. Also, 11 participants out of 33 never open Javadoc
files during the tasks.

Concerning the time spent by participants with different experience levels on different
artifacts, Fig. 5.2 and the results of the Mann-Whitney test reported in Table 5.3 indicate
that: (i) there is no significant difference in accessing use cases and sequence diagrams; (ii)
graduate students use class diagrams significantly more than undergraduates, with a medium
effect size; (ii) undergraduates students used source code and Javadoc significantly more than

123

An Empirical Investigation on Documentation Usage Patterns in Maintenance Tasks

Table 5.3: Percentage of time spent on artifacts by participants with different experience: Mann-Whitney test and
Cliff’s d effect size (positive values indicate differences in favor of graduate students, negative in favor of under-
graduates).

Artifact p-value Cliff’s d

Use Case 0.1020 0.1030
Sequence Diagram 0.3102 0.0749
Class Diagram 0.0001 0.2757
Javadoc 0.0268 -0.1040
Source Code < 0.0001 -0.2939

graduate students, with a small and medium effect size respectively. Such results partially
contradict those of other studies [125], which indicated that junior developers tend to benefit
of models than senior developers, that tend to directly focus onto source code.

To better understand the results of the quantitative analysis, we analyzed the feedbacks
provided us by means of the post-study questionnaire. Fig. 5.3 shows boxplots—for different
levels of experience—of the ratings provided by participants to the usefulness of the different
kinds of artifacts used. As explained in Section 5.2.3, one corresponds to classify a kind of
artifact (documentation as well as source code) as “totally useless”, while five indicates a
“very useful” kind of artifact.

As we can notice, sequence diagrams are considered to be the most useful kinds of arti-
fact, with a mean score of 4.3 for both undergraduates and graduates (median 4 for under-
graduates and 5 for graduates). Some of the comments left by participants in the post-study
questionnaire explain the reasons behind this evaluation. Several of them explained how
“once found the sequence diagram(s) describing the feature(s) involved in a change request,
it was easy to identify the candidate impacted components. This strongly speeds up the tasks.”
Others explained as sequence diagrams “represent a fair compromise between use cases (too
abstracts) and class diagrams (providing useless details about an entire subsystem)”.

Class diagrams and source code were generally ranked as equally useful. However, while
undergraduates found source code slightly more useful (mean 3.6, median 4) than graduates
(mean 3.2, median 3.5), the opposite happens for class diagrams, that were found more useful
by graduate students (mean 3.9, median 4) than by undergraduates (mean 3.4, median 3).
Among the 8 participants that considered class diagrams very useful, five of them explained
as “it is easy to map class diagrams on source code, and thus to fast check the candidate
impacted components identified from the diagram.” Five of the 33 participants declared the
source code as the most useful artifact. The perceived reason is that: “while the provided
high-level documentation is useful to speed-up the task, consulting source code is mandatory
to perform some of them, like the required bug-fixes.”

124

5.3. Analysis of the Results

●

●

●●

●

●

●●●

●●

●

●

Ug. Gr. Ug. Gr. Ug. Gr. Ug. Gr. Ug. Gr.

1
2

3
4

5

P
er

ce
iv

ed
 u

se
fu

ln
es

s
of

 a
rt

ifa
ct

s
(t

he
 h

ig
he

r
th

e
be

tte
r)

UseCase SequenceD ClassD Javadoc SourceCode

Figure 5.3: Perceived usefulness of the different kinds of artifacts as indicated by participants. Ug = undergraduate
students, Gr = graduate students.

As for use cases, it is interesting to note that the usefulness assessment provided by grad-
uates (mean 3.2, median 3) is higher than for bachelor (mean 1.5, median 1). This is the
only case for which the Mann-Whitney test reveals a statistically significant difference (p-
value=0.002, Cliff’s d 0.68 – high), while for all other artifacts the differences between the
two levels of experience are not significant. This suggests how more experienced participants
are able to start the task from requirements/use cases before accessing models and source
code. Undergraduates failed to explain use cases, as they tried to identify object names within
them “in use cases it was not possible to find information about components of the system
impacted by a change”, rather than relying on use cases to identify the piece of functionality
to be changed before accessing sequence/class diagrams.

125

An Empirical Investigation on Documentation Usage Patterns in Maintenance Tasks

Finally, the provided feedbacks confirmed that Javadocs were perceived as the least useful
artifacts. For Javadoc, the mean and median score was 2 (“useless”) for both undergraduate
and graduate students. Participants declared that “with the other sources of documentation
available Javadoc became useless to identify impacted components.” This is to say, our
study does not show that Javadoc is useless: it is likely to be very useful during development
activities, e.g., when using a new API. Instead, it provides a limited (or no) support when
analyzing the impact of a change.

As explained in Section 5.2.5, we also analyzed the presence of possible correlations be-
tween the time spent by participants on the different kinds of artifacts and the correctness
of the performed tasks in terms of recall, precision, and F-measure. By applying the Spear-
man correlation test no interesting correlations were found for undergraduate and graduate
students, as well as when considering all participants as a single dataset. Also, a logistic
regression model for correctness based on the use (or not) of different kinds of artifacts did
not lead to any significant result, i.e., none of the artifacts resulted significant in the model.

RQ1 summary:

[1] Participants spent more time to analyze Low-Level Artifacts as compared to
High-Level Artifacts.

[2] Participants consider sequence diagrams as the most useful source of docu-
mentation when performing the required tasks, followed by class diagrams
and source code.

[3] Undergraduate students spent a significantly higher proportion of time on
source code than graduate students that, instead, spent more time on class
diagrams.

5.3.2 RQ2: How do participants navigate different kinds of artifacts to
identify code to be changed during the evolution task?

Table 5.4 reports, for each kind of artifact used in our study, the number and percentage of
tasks participants started from such artifact. The most frequent starting point is by far source
code (42% of the tasks), followed by sequence diagrams (25%), class diagrams (17%), use
cases (12%), and Javadoc (3%). Note that this result is quite surprising since one could
expect that developers start their analysis from HLA going down to the code. Instead, in our
study 84% of the tasks started from source code and design models, i.e., class or sequence
diagrams.

126

5.3. Analysis of the Results

Table 5.4: What participants looked first.

Artifact
All data Undergrad. Graduates

#of Tasks Perc (%) # of Tasks (%) # of Tasks (%)

Use Case 31 11.92 3 3.16 28 16.97
Sequence Diagram 66 25.38 23 24.21 43 26.06
Class Diagram 45 17.31 9 9.47 36 21.81
Javadoc 9 3.46 4 4.21 5 3.03
Source Code 109 41.92 56 58.95 53 32.12

When observing data for different levels of experience (right-side of the table), what we
notice is pretty consistent with findings of RQ1 concerning the proportion of usage for differ-
ent kinds of diagrams. Basically, undergraduates tend to start tasks mainly using source code
(58%), while this percentage is only 32% for graduates. The percentage of participants start-
ing with sequence diagrams is similar (24% for undergraduates, 26% for graduates), while
graduates tend to start with class diagrams more than undergraduates (22% vs 9%). Finally,
there is a non-negligible proportion of graduates that starts from use-cases (17%, vs. 3% of
undergraduates). This is likely due to the fact that graduate students have a better training
on software engineering principles and on how using models and HLA during maintenance
tasks, and also because they have more experience in evolving existing systems.

Since we found that in 58% of cases source code does not represent the entry point, we
analyzed what are, in these cases, the pattern followed by participants before reaching source
code. Table 5.5 reports them (using through regular expressions). In a similar proportion
of tasks, participants access sequence or class diagrams before going to source code. This
happens in 71 tasks, 36 for sequence (14%) and 35 for class (13%) diagrams.

Another frequently followed path consists of one or more switches between sequence and
class diagrams. This path is more frequent starting from the sequence (22 tasks)—row (SD)+
in Table 5.5—than from class diagrams (7 tasks)—row (DS)+ in Table 5.5. In both cases,
participants tried to gain source code knowledge from its most direct model representations
(i.e., class and sequence diagrams) before going through it. Also, for 18 tasks, participants
switch one or more times between use case (used as starting point) and sequence diagrams—
row (US)+ in Table 5.5. Overall, it is interesting to note that sequence diagrams are accessed
in four out of the five most frequent path followed before reaching source code. Other paths
reported in Table 5.5 are quite uncommon, e.g., opening a use case (row U) or a Javadoc file
(row J).

When looking at results by different levels of experience (right-side of Table 5.5), it can be
noticed that, besides what it is known already from previous analyses, graduate students use

127

An Empirical Investigation on Documentation Usage Patterns in Maintenance Tasks

Table 5.5: Patterns followed before reaching source code.

Pattern
All data Undergrad. Graduates

of Tasks (%) # of Tasks (%) # of Tasks (%)

S 36 13.85 17 17.89 19 11.51
D 35 13.46 8 8.42 27 16.36
(SD)+ 22 8.46 2 2.10 20 12.12
(US)+ 18 6.92 2 2.10 16 9.70
U(SD)+ 7 3.46 1 1.05 6 3.64
(DS)+ 7 2.69 1 1.05 6 3.64
J 4 1.54 3 3.16 1 0.60
U 4 1.54 0 0.00 4 2.42
S(US)+ 3 1.15 1 1.05 2 1.21
SU(SD)+ 2 0.77 0 0.00 2 1.21
Other 13 5.00 4 4.21 9 5.45

S = Sequence Diagram, D = Class Diagram
U = Use Case, J = Javadoc

Table 5.6: Average transition frequencies between the kinds of artifacts.

From/To U S D J C

U 56% 8% 0% 36%
S 5% 17% 1% 77%
D 2% 18% 2% 78%
J 0% 6% 16% 78%
C 7% 49% 37% 7%

S = Sequence Diagram, D = Class Diagram
U = Use Case, J = Javadoc, C = Source Code

much more navigation patterns across different kinds of diagrams. As the table shows, under-
graduates just looked at sequence or class diagrams before diving into source code. Instead,
graduate students also followed more complex navigation patterns, e.g., sequence+class (with
some iterations), use case+sequence (with some iteration), or even use cases followed by it-
erations on sequence and class diagrams. Once again, this indicated that people with more
experience are more prone to follow an “integrated” approach when performing a compre-
hension task.

Then, we analyzed the transition frequencies between the different kinds of artifacts used

128

5.3. Analysis of the Results

in our study. Table 5.6 reports the results considering the entire dataset. As it can be noticed,
the most frequent transitions are toward the source code (column C), 77% of which are from
a sequence diagram, and 78% from class diagrams and Javadoc files. The take-away of
these results is that, after have gathered information from one of those kinds of artifacts,
developers try to map them into source code elements. Note that this is true also when
separately analyzing participants having different experience levels with small changes in the
transition frequencies.

The behavior of participants when reading use cases is, instead, pretty different from the
one observed above. They shift toward source code in just 36% of times, privileging the
reading of a design diagram (64% of the cases, 56% for sequence and 8% for class diagrams)
before reaching source code. However, when analyzing the data for participants having dif-
ferent experience, some differences came out. In particular, graduate students tend to consult
a low-level diagrams after accessing an use case (72%, 64% for sequence and 8% for class
diagrams), against the 43% of undergraduates (35% for sequence and 8% for class diagrams).
After reading an use case, undergraduates go to source code in 56% of cases, against the 27%
of graduates. This further confirms that more experienced developers are more prone to use
different sources of documentation when performing a comprehension task.

Other common transitions between different kinds of artifacts occur (i) when reading a
sequence diagram toward a class diagram (17%) and (ii) when reading a class diagram toward
a sequence diagram (18%). In this case, no interesting difference has been observed between
participants having different experience.

It is also interesting to analyze what other artifacts participants access immediately after
browsing source code. Table 5.6 indicates that participants go back from source code to
documentation just to access design diagram, i.e., sequence (49%) and class (37%) diagrams.
Again, no important differences were found between participants having different experience.

Finally, we analyzed the most frequent navigational patterns followed by participants
during the tasks. Table 5.7 and Fig. 5.4 report information about the six most frequent patterns
we found. In particular, Table 5.7 reports the number and percentage of occurrences on the
whole dataset and for participants with a different degree of experience, whereas Fig. 5.4
shows the boxplots for the distribution of its repetitions (i.e., the number of times a pattern
appears in a single task). As it can be expected according to what observed so far, the most
frequent pattern consists of going back and forth from sequence diagram to source code:
this occurred in 153 tasks (59%). The median of its repetitions is two, but we also found
cases where this pattern has been repeated more than 10 times in a single task. Another very
frequent pattern is that going back and forth from class diagrams to source code, present in
128 tasks (49%) with also a median repetition of two. Among the longer patterns (i.e., those

129

An Empirical Investigation on Documentation Usage Patterns in Maintenance Tasks

Table 5.7: Most frequent navigational patterns.

Pattern
All data Undergrad. Graduates

Occ. (%) Occ. (%) Occ. (%)
USDC 12 4.62 0 0.00 12 7.27
USD 21 8.08 2 2.11 19 11.52
USC 35 13.46 10 10.53 25 15.15
UDC 13 5.00 3 3.16 10 6.06
SDC 55 21.15 15 15.79 40 24.24
SC 153 58.85 58 61.05 95 57.58
DC 128 49.23 39 41.05 89 53.94

●●

●

●●●

●

●●● ●● ●●

●

●●

●

●

●

●●●

●

USDC SDC UDC USC SC DC

2
4

6
8

10
12

R
ep

et
iti

on
s

Figure 5.4: Most frequent navigational patterns and distribution of their repetitions. S = Sequence Diagram, D =
Class Diagram, U = Use Case, C = Source Code.

having a length> 2), the most frequent is that going from sequence to class diagram and then
to source code (SDC in Fig. 5.4). This pattern has been followed by participants in 21% of
the performed tasks, generally with a single repetition. Also, in 13% of tasks, participants

130

5.3. Analysis of the Results

went from use cases toward sequence diagrams, and finally to the code. In addition, from
the analysis of Fig. 5.4 we can conclude that (i) Javadoc is not present in any of the most
common patterns; and (ii) all common patterns end (as expected) with a source code artifact.

When looking at the occurrences of patterns among participants with a different level of
experience (right-side of Table 5.7), we can notice that (i) the SC pattern (sequence+code)
is consistently followed by about 60% of both undergraduates and graduates; (ii) patterns
involving use cases (USDC, USD, USC, and UDC) are much more frequent for graduate than
for undergraduates; and (iii) for what concerns longer patterns followed by undergraduates,
the SDC pattern was followed in 16% of the cases, and USC in 10% of the cases. In summary,
we can notice a higher proportion of patterns reflecting a more “integrated” approach for
graduates. Also, graduate students followed patterns involving class diagrams and code (DC)
more (54%) than undergraduates (41%). We did not notice any significant difference in
the number of iterations for all the above mentioned patterns, except for the SC pattern,
that received a median of 3 iterations for undergraduates, that used it and of 2 iterations by
graduates that used it. The difference is statistically significant (p-value =00017) and the
Cliff’s d effect size medium (d = 0.293). In other words, less-experienced participants had
to go back and forth between sequence diagrams and source code more than experienced
ones to locate the methods to be changed. As done for RQ1, we also statistically verified the
relationship between the patterns followed by participants and the correctness of their tasks.
In particular, we built a logistic regression model for correctness with respect to the use (or
not) of the different patterns. Also in this case, we did not find any statistically significant
result.

RQ2 summary:

[1] Participants tend to start the assigned task from source code or from design
documents, i.e., class and sequence diagrams.

[2] More experienced participants tend to follow a more integrated approach than
less experienced ones, traversing different kinds of diagrams, e.g., starting
from use cases, and then browsing design documents, until reaching source
code.

[3] During their task, participants tend to go back and forth repeatedly between
source code and to design diagrams (sequence and class diagrams).

131

An Empirical Investigation on Documentation Usage Patterns in Maintenance Tasks

5.4 Threats to Validity

This section discusses the threats that could affect our results.

Threats to construct validity concern the relation between the theory and the observation.
In our study, this threat can mainly be due to errors in the collected measurements. For what
concerns capturing participant’s browsing activities, we relied on an existing tool (FLUO-
RITE), making sure each participant had correctly installed it, and carefully instructed them
how to browse artifacts in Eclipse while using the tool. When collecting results, we discarded
cases of short access to artifacts (less than five seconds) that are unlikely to be an indication
of reading the document, but rather of scrolling different documents. Clearly, this might have
meant loosing some quick, but valid, accesses.

Another threat concerns the way the correctness of the task is evaluated, i.e., by means
of precision, recall, and F-measure computed over the list of elements to be modified as
identified by participants. On the one hand this allows a subjective evaluation and allows to
perform a comprehension task without requiring the execution of source code. On the other
hand, this can provide a coarse-grained and partial evaluation of how the comprehension task
was performed.

Threats to internal validity concern any confounding factor that could influence our re-
sults. For example, such a threat may be due to the fact that some participants might have
decided not to browse diagrams because they were unreadable or the tool was not usable. To
mitigate such a threat, we avoided to use any specific UML modeler (we used PDF documents
instead), and we produced diagrams large enough to be easily readable.

Threats to conclusion validity concern the relationship between the treatment and the
outcome. As explained in Section 5.2, this is more an observational study rather than a
controlled experiment, as all participants received the same treatment. Wherever possible,
however, we used appropriate statistical procedures and effect size measure to support our
claims.

Threats to external validity concern the generalization of our findings. This study has
been conducted with students, and for this reason the obtained results may not generalize to
professionals, which might be used to perform comprehension task using high-level artifacts
in a different way, or in some cases not using them at all. To some extent, our participants
can be considered as representative of junior developers, joining a project as newcomers to
perform a maintenance task.

132

5.5. Related work

5.5 Related work

Several studies have been performed to analyze the benefits of UML documentation during
software development and evolution [126]. In the next section we focus the attention on stud-
ies analyzing the effect of documentation on maintenance/comprehension tasks. In addition,
we also discuss study carried out to analyze the behavior—from different perspectives—of
developers performing maintenance tasks.

5.5.1 Impact of UML documentation on Maintenance Tasks

Experiments aimed at studying the impact of UML documentation in software maintenance [116]
indicated that such a documentation improves the functional correctness of changes and the
quality of the design. While simple class diagrams, with or without stereotypes, help low
ability or low experience participants, a complete, thorough UML documentation requires a
certain learning curve to become useful [116]. In fact, in some cases the previous experience
of participants influences the understandability of UML diagrams. Torchiano [127] showed
that object diagrams have a significant impact on comprehension tasks, when compared with
UML documentation consisting of class diagrams only.

Dzidek et al. [117] performed a controlled experiment aimed at investigating the costs
of maintaining and the benefits of using UML documentation during the maintenance and
evolution of software systems. In the context of the experiment, participants (represented
by professional developers) performed evolutionary tasks with and without UML documen-
tation. Their results indicated that participants using UML documentation were able to sta-
tistically increase the correctness of changes. Also, they were able to slightly improve the
design quality at the expense of an insignificant increase in development time caused by the
overhead of updating the UML documentation.

UML limitations in aiding program understanding are highlighted in experiments per-
formed by Tilley and Huang [121]. They highlighted that UML does not provide a sufficient
support to represent domain knowledge. Lemus et al. [119] showed that composite states im-
prove the understandability of statecharts provided that participants had a previous experience
in using them. This also happens when UML is complemented with complex formalisms,
such as the Object Constraint Language (OCL) [128]: a substantial training is required to
make OCL useful, although for some tasks OCL better helped low ability participants, who
were not able to guess system functionality from the textual description.

The role of dynamic UML diagrams in software comprehension was investigated by Otero
and Dolado [120]. The comprehension level and the time required to perform the compre-
hension task resulted different for different diagrams and system complexities. Abrahão et

133

An Empirical Investigation on Documentation Usage Patterns in Maintenance Tasks

al. [129] also analyzed the support given by sequence diagrams during the comprehension
of functional requirements. The results showed that sequence diagrams improve the com-
prehension of the functional requirements in the case of high ability and more experienced
participants.

We share with the aforementioned studies the need to analyze the support given by soft-
ware documentation during software evolution. However, we did not focus on a specific kind
of documentation. Instead, we provided to participants several documentation artifacts aim
at studying which are the most used artifacts and how developers use such artifacts.

Tryggeseth [118] conducted a study, for some aspects similar to our, to analyze the impact
of the availability of up-to-date documentation on maintenance tasks. In the context of the
experiment participants were asked to perform maintenance tasks with and without software
documentation (represented by requirements specification, design document, test report, and
user manual). Their results indicated that participants using the available documentation
spent less time to understand how to implement a change request. Besides reducing the time,
the documentation also allowed participants to better understand the system and provided
more detailed solution on how to incorporate the changes.

While we share with Tryggeseth the need for analyzing the impact of several software
documentation artifacts on maintenance tasks, our study presents two main differences: (i) we
analyzed how developers use documentation during software evolution aimed at identifying
particular navigation paths; and (ii) we also investigated the effect of experience on how
participants follow different usage paths.

5.5.2 Studies about Developers’ Behavior during Maintenance Tasks

von Mayrhauser and Vans [115] observed how professional developers work when perform-
ing maintenance tasks, finding that programmers use a multi-level approach during source
code understanding, switching between different programs as well as between different sources
of documentation.

Robillard et al. [130] performed an exploratory study to analyze the factors that con-
tribute to effective program investigation behavior, while Sillito et al. [131] performed two
qualitative studies aimed at understanding what a programmer needs to know about a code
base when performing a change task, how a programmer goes about finding that information,
and how well today’s programming tools help in that process.

Singer et al. [132] studied the daily activities of developers. Such a study provides some
guidelines fro tool designers that represent an alternative to the traditional paths taken in
human-computer interaction, namely those issuing from the study of the users’ cognitive
processes and mental models, and the emphasis on usability. Also, DeLine et al. [133] iden-

134

5.6. Summary

tified several usability issues of conventional development environments when a developer
has to update a software system, including maintaining the number and layout of open text
documents and relying heavily on textual search for navigation.

de Alwis and Murphy [122] analyzed how programmers experience disorientation when
using Eclipse, identifying three factors that may lead to disorientation: the absence of con-
necting navigation context during program exploration, thrashing between displays to view
necessary pieces of code, and the pursuit of sometimes unrelated subtasks.

Storey et al. [134] performed a study aimed at analyzing whether program understanding
tools enhance or change the way that programmers understand programs. Based on the re-
sults achieved the authors suggested that tools should support multiple strategies (top-down
and bottom-up, for example) and should aim to reduce cognitive overhead during program
exploration.

The behavior of software developers has also been analyzed aimed at identifying ap-
proaches able to reduce the information overload (e.g., number of artifacts to be analyzed) of
developers by filtering and ranking the information presented by the development environ-
ment [123, 135, 136]. The findings of our study can complement such models. The usage
patterns identified in our study can be used to complement such approaches providing a more
effective support during program comprehension.

Recently, eye tracking systems have been used to investigate the comprehension of UML
diagrams [137, 138], the effect of the layout on the comprehensibility of software documen-
tation artifacts [139], and the effect of design patterns on comprehension [140]. The use
of eye tracking systems is particular useful to investigate on the way developers look at the
documentation aimed at deriving guidelines for facilitating the comprehension of software
documentation.

We share with all these studies the need to empirically analyze the behavior of developers
during software development and maintenance. However, we analyzed the behavior from a
different perspective. Specifically, our analysis aimed at analyzing how developers use soft-
ware documentation in order to identify recurring usage paths. Such paths could be used to
enhance contemporary IDEs and provide more effective strategies for browsing documenta-
tion artifacts.

5.6 Summary

This study reported a study aimed at investigating how developers navigate and browse docu-
mentation artifacts during maintenance tasks. We asked 33 participants to perform 8 different
maintenance tasks on a Java software system providing them, besides the source code, use

135

An Empirical Investigation on Documentation Usage Patterns in Maintenance Tasks

case descriptions, sequence diagrams, class diagrams, and Javadocs. Through an Eclipse
plugin, we recorded how much time participants spent on different artifacts, and how they
navigated from an artifact to another.

Results of our study indicated that participants spent most of their time on source code
when identifying code components impacted by a maintenance activity, while preferring se-
quence diagrams among the available sources of documentation, followed by class diagrams.
Also, they generally started their tasks from source code, or from design documents (84%
of cases), then browsing back and forth between source code and either class or sequence
diagrams. Less frequently, participants—especially more experienced ones (i.e., graduate
students)—-followed an “integrated” approach, by using different kinds of artifacts, namely
starting from use cases, then accessing design documents (class and/or sequence diagrams),
and finally accessing source code. This analysis can be useful to build recommenders in help
newcomer to choice appropriate patterns in navigate software documentation when apply
maintenance tasks.

136

Chapter 6

Labeling Source Code with
Information Retrieval Methods

Contents
6.1 Motivation: support program comprehension with source code sum-

maries . 139

6.2 Study Definition and Planning . 141

6.2.1 Study Definition . 141

6.2.2 Study Context . 141

6.2.3 Research Questions . 142

6.2.4 Experimental Procedure . 143

6.2.5 Analysis Method . 148

6.3 Analysis of the Results . 151

6.3.1 RQ1: How do the labels provided by automatic techniques overlap
with labels produced by humans? 151

6.3.2 RQ2: What code elements are often used by humans when label-
ing a source code artifact? . 157

6.3.3 RQ3: What co-factors influence the effectiveness of automatic
source code labeling techniques? 158

6.4 Threats to Validity . 164

6.5 Related Work . 166

6.6 Summary . 168

137

Labeling Source Code with Information Retrieval Methods

In the previous Chapter we discussed the results of a study—conducted with 33 participants—
aimed at investigating (i) to what extent newcomers use different kinds of documentation
when identifying artifacts to be changed, and (ii) whether they follow specific navigation pat-
terns among different kinds of artifacts. Results indicate that, although newcomers spent a
conspicuous proportion of the available time by focusing on source code, they browse back
and forth between source code and either static (class) or dynamic (sequence) diagrams. Less
frequently, developers—especially more experienced ones—follow an “integrated” approach
by using different kinds of artifacts. Such information can be seen as a starting point to
built recommenders in help newcomer to choice appropriate patterns in navigate software
documentation when apply maintenance tasks. However, sometime the code complexity rep-
resents a barrier that slow down the program comprehension, as well as, the possibility of
a newcomer to become active and terms of code changes. What a newcomer needs in such
situation is a summary of code that help him/her in comprehension of complex code. This
Chapter reports an empirical study aimed at investigating to what extent a source code la-
beling based on IR techniques would identify relevant words in the source code, compared
to the words a human developer would have selected during a program comprehension task.
In recent years, researchers have applied various IR methods to “label” software artifacts
by means of some representative words. Such “summaries” can help to improve the pro-
gram comprehension of project newcomers that are join a software project. Thus, the key
goal of this chapter try to generate high quality source code summaries, useful for projects
newcomers in understanding source code elements. Results show that overall there is a rel-
atively high overlap between automatic and human-generated labels, ranging between 50%
and 90%. However, the highest overlap is obtained by using the simplest heuristic, while the
most sophisticated techniques, i.e., LSI and LDA, provide generally the worst accuracy. One
reason of the result is that developers mainly used words from class names, method names
and signatures, and (partially) from class and method comments to label artifacts. We also
found that the high entropy of terms in the classes inhibits the capability of topic modeling
techniques—i.e., LSI and LDA—to efficiently identify and cluster topics in source code. This
result highlights that approaches such as LDA and LSI are worthwhile of being used when
analyzing heterogeneous collections, where documents can contain information about multi-
ple topics [141]. Unfortunately, such an heterogeneity is not always present in source code
artifacts. Thus, the ad-hoc heuristics experimented in this study represent a valid approach
to build high quality summaries of source code elements to help new developers in program
comprehension.

138

6.1. Motivation: support program comprehension with source code summaries

6.1 Motivation: support program comprehension with source
code summaries

Program comprehension is a key activity for software maintenance and evolution. The im-
portance of program comprehension has been summarized by Rajlich and Wilde: “software
that is not comprehended cannot be changed” [142]. During program comprehension, de-
velopers read the source code aiming at building a cognitive model that is used to form a
mental model, i.e., the developers’ mental representation of the program to be understood
and changed [143].

Such a cognitive process could be tedious, error prone and time consuming in large soft-
ware systems, where especially for junior developers of a project is requested to read (and
comprehend) a large number of source code lines. In such a scenario, developers spend more
time reading and navigating the code than writing it [144,145]. Recently, several approaches
have been proposed to facilitate the comprehension of large software systems. The key idea
is to reduce the amount of information to read and comprehend by providing a “short” de-
scription of the source code which can be read quickly. In order to reach such a goal, the
source code is automatically labelled by means of some representative words.

IR techniques are used to identify—in source code identifiers and comments—keywords
that properly describe the artifact. Such a representation provides a bird-eye’s view of the
source code artifacts, that allows developers to look over software components quickly, and
make more informed decisions on which parts of the source code they need to analyze in
detail [146]. Indeed, many researchers have applied—in recent and past years—IR techniques
to automatically “label” software artifacts. For example, Kuhn et al. [147] used discriminant
words from LSI concepts to label software packages; Thomas et al. [148] used LDA to label
source code changes; Gethers et al. [149] used Relational Topics Model (RTM) to identify
and relate topics in HLA and source code.

Despite the aforementioned research efforts, up to now few studies have been performed
to analyze whether these automatic techniques are able to extract words that make sense and
are actually relevant to developers [146, 150]. This lack motivates our work. Specifically,
we investigate to what extent an IR-based source code labeling technique is able to identify
relevant words in the source code, compared to the words humans would manually select
during a program comprehension task. In essence, we aim at verifying whether the terms
identified by an automatic technique overlap with terms selected by developers when building
their mental model of a source code component. Specifically, we are interested to identify
relevant words for newcomers that are joining a software project.

To this aim we conducted two experiments in which we asked 17 Bachelor’s Students

139

Labeling Source Code with Information Retrieval Methods

and 21 Master’s Students, respectively, to describe 20 Java classes taken from a Java soft-
ware system—JHotDraw1—using at most ten words extracted from the class source code
and comments. Then, we analyzed:

[1] to what extent the keywords identified using various IR techniques, i.e., VSM, LSI,
LDA, and some ad hoc heuristic picking terms from specific part of the source code
and comments, overlap with those identified by humans;

[2] what kind of source code (and comment) elements were used by subjects to produce
the labels; and

[3] what characteristics of the analyzed artifacts could influence the effectiveness of the
various techniques used to automatically produce labels.

Results show that, overall, automatic labeling techniques are able to well-characterize
a source code class, as they exhibit a relatively good overlap—ranging between 50% and
90%—with the manually-generated labels. The highest overlap is obtained by using the
heuristic considering only terms extracted from method signatures and class comment. LSI
and LDA (which are based on artifact clustering) generally provide the worst overlap. In par-
ticular, we observed that the high entropy of terms contained in the source code artifacts—i.e.,
artifacts do not contain terms that dominate over the others—inhibits the capability of such
techniques to efficiently identify and cluster topics in source code. Indeed, LSI and LDA
were designed for analyzing heterogeneous collections, where documents can contain infor-
mation about multiple topics [141]. Unfortunately, this heterogeneity is not always present in
source code artifacts, especially when considering a single class having a well-defined set of
responsibilities, and thus few and strongly-coupled topics. In such a scenario, it is difficult to
identify dominant terms that could be used to characterize a class in terms of topics.

We also analyze the effect of other factors (e.g., comment verbosity) on time required to
participants for Labeling Source Code (LSC!) as well as the effectiveness of automatic source
code labeling techniques. We observed that the higher the comment verbosity, the lower the
time required by subjects to identify the keywords. This result confirms the importance of
having comments in comprehension tasks [151, 152]. In addition, we also observed that
clustering-based approaches (i.e., LSI and LDA) are worthwhile to be used on source code
artifacts having a high comment verbosity, and also on artifacts requiring more effort to be
manually labeled.

This Section is organized as follows. Section 6.2 describes the empirical study definition
and planning. Section 6.3 reports and discusses the results. Section 6.4 discusses the threats

1http://www.jhotdraw.org/

140

6.2. Study Definition and Planning

that could affect the validity of our study. Section 6.6 summaries the results of our empirical
study.

6.2 Study Definition and Planning

In the following, we report the definition and planning of our empirical study. The experiment
replication package and working data sets of its results are available online2. Is important to
note that in the following section we report the results obtained for only one software project
(for reason of space), but more details about the complete study conducted is available in our
bibliography in [3]

6.2.1 Study Definition

The goal of our study is to create a precise source code labelings automatically generated by
means of IR techniques and/or other simple heuristics. The quality focus concerns the quality
of automatically-generated source code labels, measured as their overlap with the human-
generated labels. The perspective is of researchers interested in understanding to what extent
automatic source code labeling approaches based on IR methods or simple heuristics can be
used, and in which circumstances each technique performs well or not.

6.2.2 Study Context

The context of our study consists of objects, i.e., classes extracted from two Java software
systems, and subjects, i.e., undergraduate students from the University of Molise, Italy, and
graduate students from the University of Salerno, Italy.

Specifically, the object systems used in our study are JHotDraw and eXVantage. JHot-
Draw3 is an open source vectorial drawing tool, developed with the purpose of illustrating
the usage of design patterns. In our study we used version 6.0 b1 of JHotDraw, which con-

2http://distat.unimol.it/reports/labeling/
3http://www.jhotdraw.org

141

Labeling Source Code with Information Retrieval Methods

Table 6.1: Classes from JHotDraw and eXVantage used as objects of our study
JHotDraw eXVantage

org.jhotdraw.draw.GraphicalCompositeFigure com.avaya.exvantage.decision.gui.Browser
org.jhotdraw.draw.TextTool com.avaya.exvantage.structures.cfg.cfgmanager.CFGManager

org.jhotdraw.draw.SelectionTool com.avaya.exvantage.source.representation.ast.CodeFragment
org.jhotdraw.io.ExtensionFileFilter com.avaya.exvantage.structures.dependency.DependencyGraph

org.jhotdraw.app.action.OpenAction com.avaya.exvantage.util.graph.EdgeElement
org.jhotdraw.draw.GroupFigure trace.EventThread

org.jhotdraw.util.prefs.PreferencesUtil com.avaya.exvantage.ui.interfaces.cli.ExvantageCommand
org.jhotdraw.draw.ArrowTip com.avaya.exvantage.trace.format.session.TraceBitEncoder

org.jhotdraw.draw.GridConstrainer com.avaya.exvantage.ui.trace.tracetransfer.TraceTransfer
org.jhotdraw.draw.TextAreaTool com.avaya.exvantage.decision.util.graph.VarMatcher

sists of 275 classes (29 KLOC). eXVantage4 is a novel testing and test data generation tool
developed in an industrial environment. The version used in our study (V20090507173755)
is composed of 348 classes (28 KLOC). In the context of our study, we selected ten classes
from JHotDraw and ten from eXVantage. We selected classes that are not too trivial, nor
too complicated to be understood by the experiment participants. Table 6.1 reports the list of
classes we selected from the systems.

Concerning the subjects involved in our study, we performed two experiments. The first
one—in the following referred as Experiment 1— involved 17 Bachelor’s students attending
the Software Engineering (SE) course at the University of Molise, Italy. The second one—in
the following referred as Experiment 2—involved 21 Master’s students attending the course
of Advanced Software Engineering at the University of Salerno, Italy. In both cases, all
subjects were from the same class and had comparable academic backgrounds, but different
demographics. All of them had knowledge of Java development (ranging from 1 to 5 years
of experience), including experience in dealing with existing large software systems. In addi-
tion, Master’s students had a previous experience in comprehending and maintaining existing
systems, and all of them have spent an internship period in industry.

6.2.3 Research Questions

In the context of our study we address the following research questions:

• RQ1: How do the labels provided by automatic techniques overlap with labels pro-
duced by humans? This is the main research question of our study, and it aims at quan-

4http://www.research.avayalabs.com

142

6.2. Study Definition and Planning

tifying the performance of an automatic technique when used to identify the keywords
that can be used to characterize a source code artifact. In presence of a high overlap,
it can be argued that the automatic technique reflects the mental model of developers
when identifying keywords in source code during a comprehension task.

• RQ2: What code elements are often used by humans when labeling a source code ar-
tifact? This research question is an investigation on the developer’s cognitive process
when reading source code. Given the artifact labels produced by humans, the research
question investigates which elements of source code and comments were used to pro-
duce the labels. We determine whether words constituting labels come from class,
method, or statement level comments, class names, method names, return types and
parameters, attribute names, local variables, programming language keywords and na-
tive types.

• RQ3: What co-factors influence the effectiveness of automatic source code labeling
techniques? Our third research question aims at identifying specific characteristics of
source code artifacts—such as entropy for distribution of terms—that could inhibit the
performance of the automated technique in producing labels similar to those produced
by humans.

6.2.4 Experimental Procedure

The study was organized in three steps, preceded by a training phase. In the first step, we
asked developers to describe the selected source code classes with a set of up to 10 keywords
(but not necessarily 10). Then, we applied different IR techniques and heuristics to automat-
ically extracting keywords from the selected classes. Once the set of keywords identified by
the experiment participants and the set of keywords identified by the automatic techniques
were collected, we computed the overlap between them, and performed the various kinds of
analyses needed to answer the research questions of our study. In the next subsections we
provide details for each of these steps.

Step 0: Subjects’ Training

Before asking subjects to label software artifacts, we made them familiar with the objects
of the study. We provided the subjects with access to both systems a month before sending

143

Labeling Source Code with Information Retrieval Methods

the questionnaire. In addition, during the experiment students periodically met system ex-
perts to enrich their domain knowledge, and one of the authors (instructor of the course) also
participated to the meetings to check the learning progress. Then, we presented the experi-
mental procedure to be followed, to make each subject aware of the exact sequence of steps
to perform. However, to avoid any bias, we made sure subjects were not aware of the research
questions of our study.

Step 1: Human Labeling of Software Artifacts

The experiment was conducted offline, i.e., by sending the experimental material to the
subjects and asking them to return the result after a given period of time. Specifically, we sent
to each subject two spreadsheet files (one for each object system) containing a questionnaire
to be filled-in. Each spreadsheet file consists of eleven sheets. The first one aims at collecting
subject’s demographics, i.e., years of computer science schooling and years of programming
experience with Java. The other ten sheets aim at collecting the keywords for each of the
classes to be analyzed. Each sheet reports the full class name and requires the subject to
provide a list of at most ten keywords, i.e., terms considered relevant in describing the class.
A term could be any source code identifier or any word contained in a compound identifier
(e.g., createFileName) or comments. In addition, we asked subjects to provide for each class
the time spent to identify the keywords, and rate the difficulty encountered to identify them
on a Likert scale of 1 to 5, where 1 indicates low difficulty and 5 high difficulty.

Subjects had two weeks to fill-in the questionnaire. This point deserves further discus-
sion because the obvious alternative would have been performing the study on-line during a
limited-time laboratory. On the one hand, the latter would have given us a higher level of
control over the study settings, making sure all subjects worked under the same condition,
and also making sure that the information they provided us about the time spent to perform
the task was correct. On the other hand, our priority was to make sure subjects produced
reliable labels, i.e., they did not produce poor labels because of lack of time or inadequate
code understanding. For this reason, we opted for an off-line study.

Once collected all the questionnaires, we analyzed them to identify the keywords most
used to label each class. In particular, for each class Ci, we first defined the set of unique
terms TCi = {t1, . . . , tm} identified by the subjects to describe Ci. For each term tj ∈ TCi

we computed its level of agreement (LoA) as follows:

LoACi
(tj) =

ftj
ns

%

where ftj represents the frequency of the term tj , i.e., the number of subjects that used tj to

144

6.2. Study Definition and Planning

label Ci, and ns represents the number of subjects involved in our study, i.e., 17 in Exper-
iment 1 and 21 in Experiment 2. The terms having a LoA higher than 50% (i.e., the terms
selected by at least half of the subjects) represent the set of keywords (KCi

) identified by
subjects to label the class Ci. As it should be clearer later, the purpose of this aggregation
is to produce “aggregated labels” comprising words selected by the majority of subjects, and
to use such aggregated labels when understanding the provenance of words (RQ1), when
comparing the overlap with automatic techniques (RQ2), and when analyzing the effect of
co-factors on the effectiveness of automatic labeling techniques (RQ3). In addition, in RQ2

we also analyzed the overlap between automatically produced labels and labels produced by
each subject separately.

Step 2: Automatic Labeling of Software Artifacts

In the second step of our study, we automatically identified the sets of keywords that could
be used to label the selected classes. To identify such keywords, we used three different IR
techniques, namely VSM, LDA, and LSI, plus three customized heuristics extracting words
from specific source code elements.

VSM [80] aims at representing documents involved in an IR process as vectors in a m-
dimensional space, where m is the size of the documents vocabulary. Documents can be
represented as a m × n matrix (called term-by-document matrix), where n is the number of
artifacts in the repository. A generic entry wi,j of this matrix denotes a measure of the weight
(i.e., relevance) of the ith term in the jth document [80].

LSI [153] is an extension of the VSM. It was developed to overcome the synonymy and
polysemy problems, which occur with the VSM model [153]. In LSI the dependencies be-
tween terms and between artifacts, in addition to the associations between terms and arti-
facts, are explicitly taken into account. For example, both “car” and “automobile” are likely
to co-occur in different artifacts with related terms, such as “motor” and “wheel”. To ex-
ploit information about co-occurrences of terms, LSI applies Singular Value Decomposition
(SVD) [154] to project the original term-by-document matrix into a reduced space of con-
cepts, and thus limit the noise terms may cause. Basically, given a term-by-document matrix
A, it is decomposed into:

A = T · S ·DT

where T is the term-by-concept matrix,D the document-by-concept matrix, and S a diagonal
matrix composed of the concept eigenvalues. After reducing the number of concepts to k, the
matrix A is approximated with Ak = Tk · Sk ·DT

k .
Latent Dirichlet Allocation (LDA) [155] fits a generative probabilistic model from the

145

Labeling Source Code with Information Retrieval Methods

term occurrences in a corpus of documents. The fitted model is able to capture an additional
layer of latent variables which are referred to as topics. Basically, a document can be consid-
ered as a probability distribution of topics—fitting the Dirichlet prior distribution—and each
topic consists of a distribution of words that, in some sense, represent the topic.

To apply VSM, LSI, and LDA we first extracted words from source code, by removing
special characters, English stop words, and (Java) programming language keywords. Each
remaining word is then split using the camel case splitting heuristic. Then, we performed a
morphological analysis to bring back words to the same root, e.g., by removing plurals from
nouns, and verb conjugations. The simplest way to do morphological analysis is by using a
stemmer, e.g., the Porter stemmer [156]. In the context of our study, we considered two kind
of corpora: (i) words from source code including comments and (ii) words from comments
only.

Then, we weighted words using two possible indexing mechanisms:

[1] tf (term frequency), which weights each words i in a document j as:

tfi,j =
rfi,j∑m
k=1 rfk,j

where rfi,j is the raw frequency (number of occurrences) of word i in document j.

[2] tf-idf (term frequency-inverse document frequency) which is defined as tf -idfi,j =

tfi,j · idfi where tfi,j is the term frequency defined above and idfi (inverse document
frequency) is defined as:

log
n

dfi

where dfi (document frequency) is the number of documents containing the word i.
tf-idf gives more importance to words having a high frequency in a document (high tf)
and appearing in a small number of documents, thus having a high discriminant power
(high idf).

For what concerns VSM, after weighting words using tf or tf-idf, for each class we se-
lected the h words (we chose h = 10) having the highest weights.

As for LSI, we applied it on each single artifact (i.e., class) rather than on the corpus
composed of all the classes of the system. This was done by considering the textual corpus
composing the body of each method as a document in the document-by-term space, then pro-
jecting the document-by-term space into a document-by-concept space, reducing the number
of concepts to k. This is because we would like to precisely identify topics representing a
given class, each of them consisting in distribution of words from the class itself (and thus

146

6.2. Study Definition and Planning

not containing words belonging to other classes)5. For the choice of k we used the heuristic
proposed by Kuhn et al. [147] that provided good results when labeling source code artifacts,
i.e., k = n·m0.2. After that, we multiplied again the three matrices Tk, Sk andDT

k , obtaining
a term-by-document matrix Ak where term weights have been projected into the LSI space.
Once the matrix Ak was computed, we extracted the h words having the highest weights in
the LSI space (i.e., Ak).

LDA was applied in the same way as LSI, i.e., by building a document-by-term space
over the textual corpus of methods belonging to the class to be labeled, and then applying
LDA over such a space. A crucial issue in the application of LDA is choosing the number of
topics. We started by setting it equal to the number of class methods (excluding getters and
setters), thus assuming that each method has a specific behavior and hence brings a topic to
the experiment (as done by Gethers et al. [149]), then we reduced it to half the number of
methods, and finally we considered the extreme case of two topics only. Once LDA has been
applied, we labeled each class using two heuristics:

• core topic: the class is labeled by the hwords of the topic having the highest probability
in the obtained topic distribution;

• core words: all the words characterizing the extracted topics are considered, and ranked
according to their probability in the obtained topic distribution. The top-h words are
then used to label the class. In this way we can label a class using words belonging to
different topics.

In addition to the IR methods above, we also use simple heuristics based on the conjecture
that when labeling a class, developers are prone to give more emphasis to terms composing
the class high-level structure. Based on such a conjecture, we label a class using three differ-
ent heuristics:

[1] The first one considers only terms from class name, signature of methods, and attribute
names. In other words, it considers elements from the class design, whose names
represent a description of the class state and behavior.

[2] The second one considers the class-level comments (excluding licensing and copyright
information)—similarly to what done by Haiduc et al. [146,157]. The rationale here is
that the class-level comments provide a meaningful description of the class itself.

5When applying LSI, a generic entry (i, j) of the term-by-document matrix that is zero before the application
of SVD (indicating that the term i does not occur in the document j), can assume a value different to zero after the
space reduction (indicating that even if the term i does not occur in the document j it has some importance in the
LSI space for the document j).

147

Labeling Source Code with Information Retrieval Methods

[3] The third one is a combination of the first two.

Finally, to obtain the labels, we selected the most representative words by ranking them using
their tf and tf-idf, however always considering the words contained in the class name as part
of the top-h words. This is because our conjecture is that the very first words a developer
would use to describe a class are the words composing the class name itself.

6.2.5 Analysis Method

In the following subsection we detail on how we analyzed the experimental results to address
the research questions formulated in Section 2.2.1.

Addressing RQ1: Computing the overlap between automatically- and human-generated
labels

To address RQ1 we determined to what extent keywords identified by subjects correspond
to those generated by automatic techniques. To this aim, we computed the overlap between
them using an asymmetric Jaccard overlap [80]. Formally, let K(Ci) = {t1 . . . tm} and
Kmi

(Ci) = {t1 . . . th} be the sets of labels of class Ci identified by the subjects and the
technique mi, respectively. The overlap is computed as follows:

overlapmi(Ci) =
|K(Ci) ∩Kmi

(Ci)|
Kmi(Ci)

It is worth noting that the size of K(Ci) might be different from the size of Kmi(Ci). In
particular, while the number of keywords identified by an automatic technique is always 10
(by construction we set h = 10), the number of keywords identified by subjects could be
more or less than 10 (depending on the level of agreement). For this reason, we used an
asymmetric Jaccard to not penalize too much an automatic method when the size of K(Ci)

is higher than 10.
We statistically tested the presence of a significant difference among overlaps obtained for

different labeling techniques using the Wilcoxon paired test (a paired test is necessary because
we pairwise compare the overlap between the automatic and manual labeling). We used a
two-tailed test to observe the differences in both directions; that, is, we do not know a priori
which technique works better. Since we applied the Wilcoxon test multiple times, we had to
adjust p-values. To this aim, we used the Holm’s correction procedure [158]. This procedure
sorts the p-values resulting from n tests in ascending order of values, multiplying the smallest

148

6.2. Study Definition and Planning

by n, the next by n − 1, and so on. Results are interpreted as statistically significant at
α = 5%.

In addition to the statistical comparison, we computed the effect-size of the observed
differences using Cliff’s delta (d) non-parametric effect size measure [82], defined as the
probability that a randomly-selected member of one sample has a higher response than a
randomly selected member of a second sample, minus the reverse probability. Cliff’s d ranges
in the interval [−1, 1] and is considered small for 0.148 ≤ d < 0.33, medium for 0.33 ≤ d <
0.474, and large for d ≥ 0.474.

Finally, we checked whether results are consistent between the two experiments, by con-
sidering the effect of the two variables Method (i.e., the IR technique or the heuristic used),
Experiment (i.e., whether results pertain to Experiment 1 or Experiment 2), and their in-
teraction on the dependent variable Overlap. This was done using a two-way permuta-
tion test [159], which is a non-parametric equivalent of the two-way Analysis of Variance
(ANOVA). Differently from ANOVA, the permutation test does not require data to be nor-
mally distributed. The general idea behind such a test is that the data distributions are built
and compared by computing all possible values of the test statistic while rearranging the
labels (representing the various factors being considered) of the data points. We use the
implementation available in the lmPerm R package. We set the number of iterations of the
permutation test procedure to 500,000. Since this test samples permutations of combination
of factor levels, multiple runs of the test may produce different results. We made sure to
choose a high number of iterations such that results did not vary over multiple executions of
the procedure.

Addressing RQ2: Determining the origin of human-generated labels

To address RQ2, we manually analyzed the labels produced by the subjects and identified
the code elements the words were taken from. The aim of this analysis is to investigate what
elements of a source code file subjects used more in their labels, and consequently understand
why different IR techniques and especially different heuristics considered in RQ1 exhibit
different performance. Specifically, we considered the following source code elements:

• different kinds of comments, namely class level comments, method-level comments
(e.g., Javadoc), and inline (statement) comments;

• different elements of method signatures, namely method names, return types, parame-
ter names and types;

• attribute names and types;

149

Labeling Source Code with Information Retrieval Methods

• local variable names; and

• programming language keywords and pre-defined types, including Java pre-defined
types such as String.

To determine the most likely used origins, for each source code file we used the oracle
computed as explained in Step 1 of our procedure and identified the element(s) each word
is located in. Clearly, some words appeared in multiple locations (e.g., both in class names
and comments). In such cases, the word was counted for both elements. Specifically, let
Terms(Ci, element) = {t1 . . . tl} be the terms extracted from the specific element of
class Ci. We computed the percentage of terms extracted from each source code element that
were also present in the oracle (SrcTermsInOracle):

SrcTermsInOracle(Ci, element) =
|Terms(Ci, element) ∩K(Ci)|

|K(Ci)|

Then, to have a better picture of the behavior of developers when labeling source code,
we computed the percentage of terms in the oracle that also appeared in each source code
element: (OracleTermsInSrc)

OracleTermsInSrc(Ci, element) =
|Terms(Ci, element) ∩K(Ci)|
|Terms(Ci, element)|

The rationale behind of these two indicators can be explained as follows:

• SrcTermsInOracle provides information about where do terms in the oracle come
from,

• whereas OracleTermsInSrc indicates the percentage of terms from a source that
were deemed useful to produce the labels.

Addressing RQ3: Factors Influencing the Accuracy of Automatic Labeling

To address RQ3, we analyzed whether various characteristics of the source code artifacts
could influence the overlap. First, we evaluated whether different labeling techniques might
be affected by the specific characteristics of the analyzed documents. To this aim, we mea-
sured the entropy for distribution of terms in the class. Formally, let t = {t1, . . . , tm} be the
terms extracted from the class Ci. We can compute the term entropy of class Ci as follows:

H(Ci) =

m∑

j=1

tfj
n
· log

(
n

tfj

)

150

6.3. Analysis of the Results

where tfj represents the frequency of the term tj , and n =
∑m
k=1 tfk. Since H(Ci) ranges

between 0 and log(m) we normalized it as H̃(Ci) = H(Ci)/log(m).
To better interpret such entropy, it is inspired from the Shannon’s definition of entropy

[160], a measure of the uncertainty associated with a random variable which quantifies the
information contained in a message produced by a data emitter. In our case, a class with a
low entropy is a class where there are few dominant terms, i.e., terms with a high tf. Classes
with a high entropy have terms with a uniformly distributed tf, hence labeling may become
problematic. In such cases, techniques such as LSI or LDA may not effectively work to
cluster artifacts. Once analyzed the entropy distribution, we divide classes in those with high
entropy (above median) and low entropy (below median), and analyze the performance of the
various techniques on clesses belonging to the “high” or “low” group.

Finally, from a statistical point of view, the effect of the entropy was analyzed by means
of a two-way permutation test [159]

6.3 Analysis of the Results

This section discusses the results of our experiments aiming at answering the research ques-
tions formulated in Section 2.2.

6.3.1 RQ1: How do the labels provided by automatic techniques overlap
with labels produced by humans?

Before comparing the labels produced by human subjects with those automatically generated
by IR techniques, we analyze the agreements among the manually-produced labels. Fig.
6.3 shows—for the two systems and for the two experiments separately—the cumulative
distribution of agreement among subjects. Specifically, each bar indicates that x% (value
indicated on the x axis) of the subjects agree on at least y% (bar value) of the overall set
words used to label the classes belonging to that system. We can note that, when considering
an agreement between 40% and 60%, the percentage of the overlapped words does not change
so much. The variation is higher when considering values above and below this range. This
confirms that, when producing an aggregated oracle by considering the LoA, a threshold of
50%, as discussed in Section 6.2, represents a reasonable choice. Moreover, to inspect the
consistency of the words choice by the subjects of the two experiments, Exp. I and Exp II, we
also compute the overlap between the respective “oracle” summaries (6.2 and 6.3). Observing
Table 6.3 for JHotDraw the words suggested by the subjects of Exp. I (Bachelor Students),
they produced an “oracle” summary with a more higher number of words if compared with

151

Labeling Source Code with Information Retrieval Methods

76% 77%

49% 49%

80%

74%
70% 69%

58%
63%

52% 53%
56% 56%

60% 59%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

tf

tf
-i

d
f tf

tf
-i

d
f tf

tf
-i

d
f tf

tf
-i

d
f tf

tf
-i

d
f

co
re

-t
p

co
re

-t
s

co
re

-t
p

co
re

-t
s

co
re

-t
p

co
re

-t
s

Signature Class
Comments

Signature +
Comments

VSM LSI LDA (n = M) LDA (n =
M/2)

LDA (n = 2)

O
ve

rl
ap

Method

(a) Experiment 1

79%
76%

47% 47%

81% 79%

70% 69%

55%

65%

51% 49%
55%

58% 57%
63%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

tf

tf
-i

d
f tf

tf
-i

d
f tf

tf
-i

d
f tf

tf
-i

d
f tf

tf
-i

d
f

co
re

-t
p

co
re

-t
s

co
re

-t
p

co
re

-t
s

co
re

-t
p

co
re

-t
s

Signature Class
Comments

Signature +
Comments

VSM LSI LDA (n = M) LDA (n =
M/2)

LDA (n = 2)

O
ve

rl
ap

Method

(b) Experiment 2

Figure 6.1: eXVantage: Mean overlap between automatically-produced labels and manually-generated labels.

152

6.3. Analysis of the Results

78% 80%

48% 48%

87%
84%

59%

65%

54% 55%
59%

55%
60%

52%

59%
62%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

tf

tf
-i

d
f tf

tf
-i

d
f tf

tf
-i

d
f tf

tf
-i

d
f tf

tf
-i

d
f

co
re

-t
p

co
re

-t
s

co
re

-t
p

co
re

-t
s

co
re

-t
p

co
re

-t
s

Signature Class
Comments

Signature +
Comments

VSM LSI LDA (n = M) LDA (n =
M/2)

LDA (n = 2)

O
ve

rl
ap

Method

(a) Experiment 1

78% 77%

50% 50%

89% 89%

65%

72%

59% 57%

65%
61%

69%

59%

65%

72%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

tf

tf
-i

d
f tf

tf
-i

d
f tf

tf
-i

d
f tf

tf
-i

d
f tf

tf
-i

d
f

co
re

-t
p

co
re

-t
s

co
re

-t
p

co
re

-t
s

co
re

-t
p

co
re

-t
s

Signature Class
Comments

Signature +
Comments

VSM LSI LDA (n = M) LDA (n =
M/2)

LDA (n = 2)

O
ve

rl
ap

Method

(b) Experiment 2

Figure 6.2: JHotDraw: Mean overlap between automatically-produced labels and manually-generated labels.

153

Labeling Source Code with Information Retrieval Methods

3%	
 6%	
 8%	
 12%	
 14%	
 17%	

25%	
 28%	

55%	

100%	

0%	

20%	

40%	

60%	

80%	

100%	

>90%	
 >80%	
 >70%	
 >60%	
 >50%	
 >40%	
 >30%	
 >20%	
 >10%	
 >0%	

%
	
 o
f	
 w

or
ds
	

%	
 of	
 agreement	
 among	
 subjects	

(a) JHotDraw: agreement variation among subjects for
Experiment 1

2%	
 5%	
 8%	
 9%	
 12%	
 16%	
 20%	
 25%	

39%	

100%	

0%	

20%	

40%	

60%	

80%	

100%	

>90%	
 >80%	
 >70%	
 >60%	
 >50%	
 >40%	
 >30%	
 >20%	
 >10%	
 >0%	

%
	
 o
f	
 w

or
ds
	

%	
 of	
 agreement	
 among	
 subjects	

(b) JHotDraw: agreement variation among subjects for
Experiment 2

Figure 6.3: Cumulative distribution of agreement among subjects.

the number of words suggested by the subjects of Exp. II (Master Students). Instead, for
eXVantage the size of the two “oracle” summaries is roughly the same. Moreover, the overlap
between the “oracle” summaries used for the two experiments is very high and at least the
76% for both the two systems considered in the study and in both the experiments confirming
that there is a big core set of common words between subjects of Exp. I and Exp II (i.e.,
Bachelor Students and Master Students).

Fig. 6.1 and Fig. 6.2 show—for eXVantage and JHotDraw respectively—the average
overlap between the human-generated labels and the automatic labels obtained (i) using dif-
ferent IR methods (VSM, LSI, and LDA), (ii) the heuristic that extracts words from class
interfaces (referred as “signature”), (iii) the heuristic that extracts words from class-level
comments (referred as “class comments”) (iv) the heuristic that combines the previous two
heuristics (referred as “signature + comments”). The figures also show the variability (stan-
dard deviation) of the overlap obtained by the different methods over different classes. The
analysis reveals that the overlap achieved by all the experimented methods for automatic
labeling varies between 40% and 90%. In particular, results indicate that—in both experi-
ments and for both systems—LSI and LDA achieve the worst overlap if compared to the sim-
pler VSM (which, unlike LSI and LDA, does not reduce the term space into a topic/concept
space), and to the signature and signature+comments heuristics. Specifically, the different
variants of LSI and LDA achieve an average overlap with human labeling varying between
40% and 65%, whereas VSM obtains an average overlap about 3% higher than what achieved
by LSI and LDA. The best performance are achieved by the simple heuristics (signature and
signature+comments): in such cases the overlap is always higher than 75% for eXVantage
and 85% for JHotDraw. Instead, considering comments only does not guarantee good perfor-
mance (the overlap is always smaller than 50%). In essence, a heuristic that considers class
comments to automatically produce labels is not sufficient to achieve good performance. Our
interpretation of this result is the following: taking the most frequent words from class-level

154

6.3. Analysis of the Results

Table 6.2: eXVantage: Overlap between the "oracle" summaries used for the two experiments

eXVantage
Experiment 1 Experiment 2 Overlap

63 62 49

Table 6.3: JHotDraw: Overlap between the "oracle" summaries used for the two experiments

eXVantage
Experiment 1 Experiment 2 Overlap

75 60 57

comments would likely pick random words, because it is difficult to build a vector space
model on such a small corpus. For this reason, automatically generating a label from class
comments does not produce satisfactory results.

In summary, seems that simple heuristics (signature and signature+comments) experi-
mented in this study are the more precise in generate high quality summaries of source code
to help newcomers in program comprehension os source code elements. With the aim of
statistically supporting this finding , Table 6.4 reports the Cliff’s d values obtained in pair-
wise comparison of the various labeling methods, highlighted in bold face when p-values
(adjusted using the Holm’s correction) of the Wilcoxon Rank Sum test are statistically signif-
icant (i.e., when the adjusted p-value < 0.05). Since it would not be practical to show results
related to all possible comparisons, we only compared the top-two performing heuristics
(i.e., signature and signature+comments) with all other techniques. Results of the statistical
tests and effect size measures confirm our preliminary findings discussed above. The sig-
nature+comments heuristic produces a statistically significant improvement with respect to
other automatic methods in the majority of cases (38 cases out of 40). Moreover, the Cliff’s
d effect size is large in 73% of the cases (29 out of 40), medium in 20% of the cases (9 out
of 40), and small in 5% of the cases (2 out of 40). However, it is important to note that for
the few cases (2 cases out of 80) for which there is no statistical difference—e.g., when com-
paring Signature with VSM-tf-idf on eXVantage and JHotDraw—the adjusted p-values range
between 0.05 and 0.06, thus they are marginally significant. Moreover, the correspondent
Cliff’s d is positive (medium in some cases, small in other cases), highlighting an improve-
ment for these cases too. The heuristic based on the signatures (without taking into account
the class comments) also achieves a significant improvement with respect to other heuristics
in the majority of cases (38 cases out of 40). The Cliff’s d effect size value is large in 57% of
the cases (23 out of 40), medium in 30% of the cases (12 out of 40), and small in 5% of the

155

Labeling Source Code with Information Retrieval Methods

Table 6.4: Cliff’s d for differences of overlap between automatic labeling and human labeling provided by each
subject. Values shown with ∗ for comparisons where the Wilcoxon Rank Sum test indicates a significant difference.
We use S, M, and L to indicate a small, medium and large effect size, respectively.

Comparison
Experiment 2 Experiment 1

eXVantage JHotDraw eXVantage JHotDraw
Sign. + class com. > VSM-tf 0.62∗ (L) 0.31∗ (S) 0.50 ∗(L) 0.45∗ (M)
Sign. + class com. > VSM-tf-idf 0.48∗ (L) 0.29+ (S) 0.34+ (M) 0.39 (M)
Sign. + class com. > LDA-core-tp (n=M) 0.97∗ (L) 0.39∗ (M) 0.89∗ (L) 0.51 ∗ (L)
Sign. + class com. > LDA-core-ts (n=M) 0.94 ∗(L) 0.61 ∗(L) 0.90 ∗(L) 0.73 ∗ (L)
Sign. + class com. > LDA-core-tp (n=M/2) 0.80 ∗(L) 0.41 ∗(M) 0.79∗ (L) 0.45∗ (M)
Sign. + class com. > LDA-core-ts (n=M/2) 0.89∗ (L) 0.56 ∗(L) 0.82∗ (L) 0.68∗ (L)
Sign. + class com. > LDA-core-tp (n=2) 0.65 ∗(L) 0.45∗ (M) 0.58∗ (L) 0.41∗ (M)
Sign. + class com. > LDA-core-ts (n=2) 0.66 ∗(L) 0.43∗ (M) 0.53 ∗(L) 0.54∗ (L)
Sign. + class com. > LSI-tf 0.80 ∗(L) 0.72∗ (L) 0.61∗ (L) 0.76 ∗(L)
Sign. + class com. > LSI-tf-idf 0.67∗ (L) 0.69 ∗(L) 0.54∗ (L) 0.79∗ (L)
Sign. > VSM-tf 0.50 ∗(L) 0.26 ∗(S) 0.39 ∗(M) 0.38∗ (M)
Sign. > VSM-tf-idf 0.36 ∗ (M) 0.25 ∗ (S) 0.23 + (S) 0.33 +(M)
Sign. > LDA-core-tp (n=M) 0.91∗ (L) 0.32 ∗(S) 0.86 ∗ (L) 0.41 ∗ (M)
Sign. > LDA-core-ts (n=M) 0.88 ∗ (L) 0.54 ∗(L) 0.84∗ (L) 0.66 ∗(L)
Sign. > LDA-core-tp (n=M/2) 0.73∗ (L) 0.27 ∗(S) 0.70∗ (L) 0.36∗ (M)
Sign.> LDA-core-ts (n=M/2) 0.80∗ (L) 0.44∗ (M) 0.78∗ (L) 0.60∗ (L)
Sign. > LDA-core-tp (n=2) 0.51∗ (L) 0.37 ∗(M) 0.48 ∗(L) 0.34 ∗(M)
Sign. > LDA-core-ts (n=2) 0.51 ∗(L) 0.35∗ (M) 0.45∗ (M) 0.46∗ (M)
Sign. > LSI-tf 0.71∗ (L) 0.61 ∗(L) 0.55∗ (L) 0.69 ∗(L)
Sign. > LSI-tf-idf 0.55 ∗(L) 0.60 ∗(L) 0.48 ∗(L) 0.71 ∗(L)
Sign. + class comm. > Sign. 0.22∗ (S) 0.06 0.27 ∗(S) 0.08

cases (4 out of 40). In summary, the signature+comments heuristic outperforms the heuris-
tics considering class signature and comments separately. A direct comparison between the
two heuristics shows that there is a significant difference between them only for eXVantage
where, as discussed above, comments seem to be able to improve the performance of the
signature-based heuristic.

As also shown in Fig. 6.1 and Fig. 6.2, it is worthwhile to point out how, RQ1 results
are pretty consistent between Experiment 1 and Experiment 2. This is also confirmed by a
two-way permutation test (where we consider the overlap as dependent variable, and both
the IR method used and the experiment as independent variables), which for both JHotDraw
and eXVantage indicated that the overlap is significantly influenced by the Method (p-value
< 0.001), while it is not influenced by the Experiment (p-value= 1) nor by the interaction of
the Method and the Experiment (p-value= 1).

156

6.3. Analysis of the Results

Table 6.5: SrcTermsInOracle: Percentage of oracle words belonging to different source code entities, and (in
parenthesis) OracleTermsInSrc: percentage of entity words considered in the oracle.

System Exp.
Class Method Inline Class

Attrib. Param.
Method Returned Local Keywords and

comm. comm. comm. name name type var. predef. types

eXVantage

Exp 1 44% 46% 17% 48% 29% 52% 43% 21% 37% 0%
(26%) (8%) (12%) (79%) (24%) (38%) (33%) (59%) (39%) (0%)

Exp 2 35% 66% 15% 26% 34% 29% 48% 0% 15% 5%
(21%) (12%) (10%) (80%) (28%) (20%) (37%) (0%) (15%) (3%)

JHotDraw

Exp 1 51% 58% 32% 25% 34% 46% 62% 4% 30% 0%
(15%) (14%) (20%) (76%) (60%) (30%) (39%) (9%) (23%) (0%)

Exp 2 60% 68% 35% 30% 35% 50% 50% 3% 32% 0%
(14%) (13%) (17%) (72%) (49%) (25%) (25%) (6%) (19%) (0%)

RQ1 Summary: The achieved results indicate that the best heuristics for class la-
beling are simple heuristics considering class signatures and combining class signa-
tures with class comments, while class comments alone do not perform well.

6.3.2 RQ2: What code elements are often used by humans when label-
ing a source code artifact?

Table 6.5 reports SrcTermsInOracle, the percentage of terms in the human-generated ora-
cle (obtained by computing the level of agreement, as explained in Section 6.2) appearing in
various source code entities. Also, the table reports (in parentheses) OracleTermsInSrc,
the percentage of terms belonging to that source code entity that were actually used in the
oracle.

The obtained results highlight that the majority of the terms suggested by the subjects
belong to method names (ranging between 43% and 62%), method parameters (ranging be-
tween 29% and 52%), class comments (ranging between 35% and 60%) and method com-
ments (ranging between 46% and 68%). The percentage of labels taken from terms compos-
ing a class names is relatively lower (between 25% and 48%) than what obtained for method
names and parameters, however, this only happens because class names are composed of few
words, that do not suffice to properly describe the responsibility of the class itself. However,
as the percentages in parentheses show, over 70% of terms belonging to class names are used
in the oracles, confirming that terms from class names are almost always taken when produc-
ing labels. We can also notice that, for eXVantage, the percentage of labels taken from terms
composing class names is higher in the first experiment than in the second one. There is no
straight-forward explanation for that. However, it might have happened that Experiment 1
subjects (undergraduate students) usually kept terms from class names as first and obvious

157

Labeling Source Code with Information Retrieval Methods

choice, whereas Experiment 2 subjects (graduate students) also looked elsewhere, and this
happened in particular for eXVantage than for JHotDraw, as the former has more comments
than the latter.

Thus, terms describing the class interface (i.e., coming from method names and param-
eters) result to be particularly useful for the labeling process. The same can be said for
class-level comments and method comments: this is quite intuitive because class-level com-
ments often contain short descriptions of the class and method behavior and responsibilities.
This finding is fully in agreement with results of the study done by Haiduc et al. [146], who
used the first words of a source code file—often corresponding to class-level comments—to
summarize a class.

When looking at OracleTermsInSrc for class and method comments, we can notice
they are relatively low (below 30%). This indicates that, while oracles contain a high per-
centage of class and method comments, such comments also contain many words that do not
appear in the oracle, which can be expected considering the verbosity of comments if com-
pared to a 10-words label. This has a clear, negative, consequence if trying to use comments
alone to produce labels (see results of RQ1 in Fig. 6.1 and Fig. 6.2). In essence, although
words contained in class and method comments are useful to produce the label, the automatic
heuristic is not able to discern the relevant words from the noise.

We found that terms taken from method local variables are relatively less used (between
15% and 37%), likely because they represent low-level entities that are, generally, not partic-
ularly relevant when describing the overall responsibilities of a class. Similar considerations
apply for inline comments. Finally, method return types and programming language pre-
defined types and keywords are almost never used. Again, such entities could be used when
describing methods (where one could mention algorithmic details or returned values) while
they are not needed when describing a class.

RQ2 Summary: We can conclude that, to label a class, subjects participating to
our experiments mainly used class and method names and signatures, as well as
some words of class and method comments. However, comments also contain a
high percentage of words not appearing in the oracle. This confirms why the heuris-
tics signature and signature+comments produces very good results, while comments
alone does not.

6.3.3 RQ3: What co-factors influence the effectiveness of automatic source
code labeling techniques?

In the following, we analyze how the characteristics of the source code artifacts influence
the performance of automatic labeling approaches. First, we study how such performance

158

6.3. Analysis of the Results

are related to the term entropy in the artifacts. Then, we investigate how the performance
correlate with the class size and comment verbosity, and how such factors correlate to the
difficulty for labeling such classes, measured in terms of the effort our subjects spent in the
labeling tasks.

Effect of term entropy

Results of RQ1 The achieved results indicate that the best heuristics for class labeling are
simple heuristics considering class signatures and combining class signatures with class com-
ments. LSI and LDA are based on clustering analysis: all documents (classes in our case) are
implicitly clustered on the basis of their shared latent concepts/topics. Source code artifacts
having the same latent concepts/topics are considered as components of the same cluster,
while artifacts having different latent concepts/topics are placed in different clusters. For this
reason, such techniques are often used to identify topics in source code (see for example the
work of Kuhn et al. [147]). Thus, LSI and LDA work well if documents contain dominant
terms—i.e., terms having a higher frequency than others—that can be used to derive and
extract the topics discussed in the documents. More formally, LDA and LSI work well for
documents having a low term entropy, i.e., documents for which the distribution of terms—
proportional to their frequency—is not uniform across different documents, with few terms
that are more frequent than others. In essence, because of the non-uniform distribution of
terms—and their low entropy—it is easier for the clustering-based techniques to derive the
dominant concepts/topics discussed in the documents.

Differently from traditional natural language artifacts, heterogeneity is not always present
in source code artifacts, especially when the goal is to extract topics from single classes, com-
posed of “conceptually cohesive” [161] methods. A possible explanation is that a class is a
crisp abstraction of a domain/solution object, and should have a few, clear, responsibilities.
Thus, a class has generally a few number of strongly-coupled topics. Moreover, the frequency
of terms contained in the source code is very low. This means that when analyzing the tex-
tual content of classes, it is difficult to identify dominant terms that characterize the topics
discussed in the class itself. To verify such a conjecture, we computed the entropy of terms
contained in the classes used in our study as described in Section 6.2. High entropy indi-
cates that the probability distribution of the terms is quite uniform, reducing the capability of
clustering-based techniques to identify dominant terms that can be used to characterize the
class topics.

Fig. 6.4 shows boxplots of the term entropy for the classes considered in our study. For
both systems, the median term entropy (and even the first quartile) is greater than 0.8, indicat-
ing that the selected classes have a quite high entropy. Since a high entropy means that terms

159

Labeling Source Code with Information Retrieval Methods

●

eXVantage JHotDraw

0.
80

0.
85

0.
90

0.
95

Figure 6.4: Entropy of terms in the classes sampled for our experiments.

occurring in a class have almost the same probability, then it is hard to identify dominating
terms that can be used to label such a class. This explains the poor performance of the two
clustering-based IR methods, namely LSI and LDA.

It is important to note that the classes selected in our study are not the only ones hav-
ing a high entropy. We also computed the entropy for all classes of the two systems. We
obtained an average entropy of 0.89 for ExVantage, and 0.87 for JHotDraw. Thus, we can
conclude that clustering-based approaches will lead to some difficulties when dealing with
highly-homogeneous collections, such as source code classes. To provide further evidence to
this issue, Fig. 6.5 displays pairwise document distances achieved using LDA when cluster-
ing source code artifacts of eXVantage at two different levels of granularity. For eXVantage,
Fig. 6.5-(a) shows the results achieved by clustering all eXVantage classes, while Fig. 6.5-(b)
shows the clustering of methods of a class, EventThread (such a class was just taken as an
example to show the distribution of topics among methods). Similarly, Fig. 6.5-(c) shows the
clustering of JHotDraw classes, while Fig. 6.5-(d) shows the clustering of methods belong-
ing to the JHotDraw GraphicalCompositeFigure class. Each node of the graph represents

160

6.3. Analysis of the Results

(a) eXVantage: Distance between classes (b) eXVantage: Distance between methods of class
EventThread

(c) JHotDraw: Distance between classes (d) JHotDraw: Distance between methods of class
GraphicalCompositeFigure

Figure 6.5: Distance between source code elements.

a class (or a method), while the weight of the edges measures the distance between topic
distributions of each pair of classes (methods). Thus, if two classes (or methods) have differ-
ent distribution of topics (i.e., they belong to different topics), then the correspondent nodes
are far from each other in the graph. As we can notice from the figures, in all cases most
classes (or methods) are concentrated in a small area. In such a scenario, it is quite difficult
to discriminate between classes (or methods), and consequently efficiently clustering them.

To provide further evidence of the relationship between entropy and the overlap achieved

161

Labeling Source Code with Information Retrieval Methods

Table 6.6: Examples of high and low labeling overlap achieved on eXVantage. Terms in bold face represent the gold
words used by subjects.

Class Method # Topics Topic Probability Terms Overlap Entropy

CFGManager LDA core-tp 2
0.49

string, cfg, key, mapping, file-
name, temp, file, global, instru-
ment, integer

0.20 0.97

0.51
list, temp, string, value, cfg, ta-
ble, classname, name, map, key

EdgeElement LDA core-tp 2
0.26

edge, set, node, element, name,
boundary, undefined, defined,
illegal, access

1 0.78

0.74
node, attribute, graph, edge,
boundary, element, doc, inherit,
parameter, value

by LDA, Table 6.6 shows two examples of eXVantage classes having high and low term
entropy, respectively. The terms identified by LDA that overlap with those identified by
humans are shown in bold face. For the class CFGManager, the entropy is very high (0.97),
highlighting that all the terms extracted from the source code have the same frequency. In
such a scenario it turns out to be difficult for LDA to identify the most important topic. Indeed,
the class CFGManager has the same probability to discuss about one of the two main topics
indifferently, since the two topics are quite equiprobable. This results in a very low overlap
between automatic and human label. In the latter case, there are some dominating terms (as
indicated by the much lower entropy) and LDA is able to identify well-distinct topics in the
class under analysis. Indeed, when applying LDA, we can observe that in EdgeElement one
of the two topics has a probability greater than the other one. Such terms are selected by LDA
to label the class and, as suggested by the high overlap, the same terms were also selected by
subjects. The factor entropy affects not only LDA but also LSI that is a clustering technique
too. In particular, for the two classes considered in the previous example when using tf
as terms weighting schema, LSI obtains a higher overlap with human labeling (100%) for
EdgeElement, which exhibits a low term entropy, while for CFGManager the overlap is
about 40%.

Similar considerations apply for JHotDraw. To this aim, Table 6.7 shows two examples
of classes from JHotDraw with high and low term entropy respectively. The entropy is high
for PreferenceUtil, while it is low for GraphicalCompositeFigure. Such different entropy
values affect the capability of LDA to consistently identify and extract the main topic. Indeed,
for PreferenceUtil LDA identifies two topics having exactly the same probability, resulting
in a very low overlap with automatic and human label. Conversely, for GraphicalCompos-
iteFigure LDA extracts two topics with two quite different probabilities. This is mirrored by

162

6.3. Analysis of the Results

Table 6.7: Examples of high and low labeling overlap achieved on JHotDraw. Terms in bold face represent the gold
words used by subjects.

Class Method # Topics Topic Prob. Terms Overlap Entropy

GraphicalCompositeFigure LDA core-tp 2
0.65

figure, key, presentation,
attribute, composite, value,
graphical, set, draw, element

0.86 0.82

0.35
presentation, figure, attribute,
key, bounds, graphical, set, lis-
tener, event, undoable

PreferenceUtil LDA core-tp 2
0.50

screen, insert, name, bound,
window, component, preferred,
height, size, preference

0.38 0.87

0.50
time, bound, event, component,
window, screen, name, prefer-
ence, size, rectangle

a high overlap. Similar results are achieved using LSI. Indeed, using tf as terms weighting
schema, LSI obtains better results for the class having the lowest term entropy. Indeed, the
achieved overlap with human labeling is about 38% for PreferenceUtil and the 100% for
GraphicalCompositeFuigure. In summary, these examples allow us to highlight the strong
relationship between the entropy of terms and the performance of the clustering based auto-
matic techniques, i.e., LDA and LSI. The higher the term entropy, the lower the performance
achieved by the clustering techniques.

In order to generalize this kind of analysis for all the techniques, we investigate whether
the terms entropy influence the achieved overlap, or interacts with the adopted technique
to this regard. For a first analysis, we grouped the classes in two groups (low and high),
based on their terms entropy. In particular, a first group contains all classes for which the
terms entropy value is higher than the median, and a second cluster contains the remaining
ones. Then, we analyzed the overlap similarly to what was done in RQ2 for low and high
entropy separately. Results are shown in Table 6.8. Such results indicate all the techniques
are effected by the entropy factor. For example, it can be noticed that VSM performs, on
average, 10% better on classes with lower entropy. Instead, the performance of LDA are
not necessarily better for classes with lower terms entropy than the other: in the 50% of
cases LDA achieves a higher overlap with human labeling for classes with lower entropy
values, while the scenario is opposite in the remaining cases. The proposed heuristics is also
affected by the entropy factors, however, they always outperforms all the other techniques
independently of the entropy of terms.

Table 6.9 reports the results od the permutation test with the aims at providing statistical
support to the results shown in Table 6.8. The entropy factor plays a significant role for
both systems while it shows a significant interaction only for the Experiment 1 and only on

163

Labeling Source Code with Information Retrieval Methods

Table 6.8: Average overlap between manual labeling and automated labeling collected by the terms entropy (high
and low terms entropy). M represents the number of methods in the class.

Corpus type
exVantage JHotDraw

Experiment 1 Experiment 2 Experiment 1 Experiment 2
Low High Low High Low High Low High

Signature
tf 89% 63% 81% 76% 75% 82% 74% 83%
tf-idf 86% 67% 74% 78% 78% 82% 74% 80%

Class Comments
tf 52% 45% 47% 47% 50% 47% 53% 46%
tf-idf 52% 45% 47% 47% 50% 47% 53% 46%

Sign. + Class Comments
tf 89% 72% 84% 79% 84% 90% 89% 89%
tf-idf 73% 75% 77% 81% 81% 88% 89% 89%

VSM
tf 82% 58% 81% 59% 59% 59% 70% 61%
tf-idf 77% 61% 76% 61% 64% 67% 76% 69%

LSI
core-tp 71% 46% 71% 39% 57% 50% 63% 54%
core-ts 80% 46% 81% 49% 41% 69% 3600% 77%

LDA(n = M)
core-tp 56% 48% 52% 50% 57% 62% 66% 63%
core-ts 48% 58% 47% 52% 55% 56% 81% 41%

LDA(n = M/2)
core-tp 65% 46% 64% 45% 59% 62% 75% 63%
core-ts 61% 51% 61% 55% 51% 54% 62% 55%

LDA(n = 2)
core-tp 72% 58% 72% 42% 54% 65% 71% 60%
core-ts 71% 47% 70% 55% 59% 65% 80% 64%

Table 6.9: Permutation test by Method and terms entropy.
Method Entropy Method:Entropy

System Exp. p-value p-value p-value
eXVantage Exp 1 0.04 < 0.001 0.02

Exp 2 < 0.001 < 0.001 0.14
JHotDraw Exp 1 < 0.001 0.87 0.98

Exp 2 < 0.001 0.004 0.81

eXVantage. These results confirm that the automatic labeling is more difficult for classes
with high terms entropy independently of the specific automatic technique use

RQ3 Summary: Simple heuristics exhibit good performance independently of the
class size and comment verbosity. Furthermore, LDA and LSI work well on artifacts
having a low term entropy, which is quite infrequent for source code artifacts.

6.4 Threats to Validity

This section describes threats that can affect the validity our study. Threats to construct va-
lidity concern relationship between the theory and the observation. In our study, threats to

164

6.4. Threats to Validity

construct validity are mainly related to the measurements we performed to address our re-
search questions. To investigate to what extent labelings identified by humans match those
identified by automatic approaches (RQ1), we rely on a widely used IR technique, i.e., the
Jaccard overlap score. For what concerns the origin of terms used by humans to label soft-
ware artifacts (RQ2), we performed a manual analysis to map the list of terms provided by
subjects onto source code elements. To avoid mistakes, the analysis was performed by two
independent persons (two of the authors), and results were compared and discussed to solve
inconsistencies.

Threats to conclusion validity concern the relationship between the treatment and the
outcome. Wherever appropriate, we use statistical procedures to corroborate our results.
Specifically, we use non-parametric tests (Wilcoxon) and correlation procedures (Spearman
rank), adjusting p-values using the Holm procedure when performing multiple tests on the
same data. In addition, we report Cliff d effect size to provide a quantitative assessment of
the differences found. Also, whenever a co-factor analysis is needed, we use permutation
tests that, differently from ANOVA, does not require data to be normally distributed.

Threats to internal validity are related to factors that can influence our results. In terms
of human factors, thre was no abandonment, i.e., all subjects completed the task. To mitigate
the effect of labeling variability across subjects, we chose the most frequent words they used
to label each class. Another factor that can influence our results could be the choice of
the number of topics for LDA, and the number of concepts in LSI. For the former, we used
different settings (i.e., number of topics equal to the number of methods, half of them, and two
topics only). For the latter, we used the heuristics adopted by Kuhn et al. [147]. Furthermore,
we investigate whether other factors—such as the class entropy and the textual similarity
among classes—could have influenced the results of the various techniques.

Threats to external validity concern the generalization of results. We tried to investigate
as many IR-based techniques as possible to perform automatic labeling: VSM, LDA, LSI,
and three simple heuristics, considering words form class comments, signatures, and their
combinations. Also, we compared different weighting schemes (tf and tf-idf), and different
sources of information (source code including comments, and comments only). However,
we are aware that there could be other heuristics we did not consider. We are also aware
that the study involved objects from two Java systems only. Therefore, results could be
different if replicating the study on other systems, and in particular on objects developed
with different programming languages. For instance it would be interesting to replicate on
programs written using programming languages like C where, differently from Java, term
separators (e.g., Camel Case) are not consistently used, and also there is a high usage of
abbreviations [162]. Last, but not least, we are aware that our labelings were performed by

165

Labeling Source Code with Information Retrieval Methods

students. Although we carefully avoided (by means of a proper training) that the limited
knowledge of the objects could have influenced the results, we are aware that results could
possibly vary if replicating with professionals. For example, it may (or may not) happen that
professionals would, in some case, pick other terms than those in the method signatures/class
names, thus decreasing the performance of the simple heuristic. As a partial mitigation to this
threat, subjects employed in Experiment 2 had more experience than those of Experiment 1—
also including industrial experience gained during periods of internship.

6.5 Related Work

The rapid development of software engineering methods and tools and the increasing com-
plexity of software projects has led, in the last decades, to a significant production of tex-
tual information contained in structured and unstructured project artifacts. As consequence,
several researchers investigated the analysis of textual information contained in the artifacts
of software repositories to support activities such as impact analysis [163], clone detec-
tion [164], feature location (e.g., [165]), definition of new cohesion and coupling metrics
(e.g., [161, 166]), assessment of software quality (e.g., [151, 152, 167, 168]), and traceability
recovery (e.g., [169–175]).

Related to our work is the use of textual analysis, and in particular topic modeling tech-
niques, to mine and understand topics within source code. Such approaches aim at providing
support to program comprehension by deriving a snapshot of the system that is easier to un-
derstand. Clustering semantically related classes or labeling can be considered as a way to
summarize the responsibilities of source code artifacts aiming at aiding developers in com-
prehension tasks.

Maletic and Marcus [176] proposed the combined use of semantic and structural infor-
mation of programs to support comprehension tasks. Semantic information, captured by LSI,
refers to the domain specific issues (both problem and development domains) of a software
system, while structural information refers to issues such as the actual syntactic structure of
the program along with the control and data flow that it represents. Components within a
software system are then clustered together using the combined similarity measure.

Kuhn et al. [177] extended the work by Maletic and Marcus introducing the concept of
semantic clustering, a technique based on LSI to group source code documents that share a
similar vocabulary. After applying LSI to the source code, the documents are clustered based
on their similarity into semantic clusters, resulting in clusters of documents that implement
similar features. The authors also used LSI to label the identified clusters. Finally, a vi-
sual notation is provided, which is aimed at giving an overview of all the clusters and their

166

6.5. Related Work

semantic relationships.

Baldi et al. [178] applied LDA to source code to automatically identify concerns. In par-
ticular, they used LDA to identify topics in the source code. Then, they used the entropies of
the underlying topic-over-files and files-over-topics distributions to measure software scatter-
ing and tangling. Candidate concerns are latent topics with high scattering entropy.

Linstead et al. [179] used LDA to identify functional components of source code and
study their evolution over multiple project versions. The results of a reported case study
highlight the effectiveness of probabilistic topic models in automatically summarizing the
temporal dynamics of software concerns.

Thomas et al. [180] also applied LDA to the history of the source code of a project to
recover its topic evolutions. The authors considered additional topic metrics (i.e., scatter and
focus) to better understand topic change events, and providing a detailed, manual analysis of
the topic change events to validate the results of the approach.

All these works on topic analysis produced project-specific topics that needed to be man-
ually labeled. Hindle et al. [181] presented a cross-project data mining technique leverag-
ing software engineering standards to produce a method of partially-automated (supervised)
and fully-automated (semi-unsupervised) topic labeling. Since the proposed approach is not
project-specific, it is possible to use it to compare two distinct projects.

Hindle et al. [150] used LDA in an industrial context to relate requirements to code.
They performed an empirical study in order to verify whether the information extracted with
LDA matches the perception that program managers and developers have about the effort
put into addressing certain topics. The results indicated that in general the identified topics
made sense to practitioners and matched their perception of what occurred even if in some
particular cases practitioners had difficulty interpreting and labeling the extracted topics.

Recently, Medini et al. [182] used IR methods and formal concept analysis to produce sets
of words helping the developer to understand the concept implemented in execution traces.
The authors performed both a qualitative as well as a quantitative analysis of the proposed
approach. The analysis revealed that the approach is quite accurate in identifying topics in
execution traces and in most cases the suggested labeling terms are effective to help grasping
the segment functionality.

Besides topic analysis, summarization techniques have also been applied to source code
artifacts for different purposes. Rastakar et al. used a Machine Learning (ML) approach to
automatic generate summaries of bug reports [183] and software concerns [184]. Buse and
Weimer proposed an approach to automatically generate human-readable documentation for
arbitrary code differences [185].

Murphy [186] presented the software reflection model and the lexical source model ex-

167

Labeling Source Code with Information Retrieval Methods

traction. Such models can be considered as a lightweight summarization approach of soft-
ware. Sridhara et al. used natural language processing techniques to automatically generate
leading method comments [187], and comments for high-level actions [188]. Also the auto-
matic generation of comments can be considered as a kind of summarization of source code
components.

In summary, several of the works described above used different techniques to label or
summarize software artifacts. Our study constitutes a complementary contribution to such
approaches, because it aims at assessing automatic labeling techniques by comparing them
with human-generated labels.

Haiduc et al. [146, 157] recently applied several summarization techniques for the auto-
matic summarization of source code artifacts with the purpose of aiding developers in com-
prehension tasks. In a reported case study [146] they found that a combination between tech-
niques making use of the position of terms in software and Textual Retrieval (TR) techniques
capture the meaning of methods and classes better than any other of the studied approaches.
In addition, an experiment conducted with four developers revealed that the summaries pro-
duced using this combination make sense.

To the best of our knowledge, the work by Haiduc et al. [146] is the most relevant to
our work. However, while Haiduc et al. asked developers to validate the summaries, we
compare the labelings obtained with automatic techniques with humans’ labels. This pro-
vides an objective and more precise evaluation of the accuracy of automated techniques in
approximating the cognitive model of developers. In addition, we used a larger and different
set of techniques based on advanced IR methods and also on “ad hoc” heuristics. Finally,
we involved in our experimentation a larger number of subjects (37 vs. 4) having differ-
ent experience (both undergraduate and graduate students), showing that results are almost
perfectly consistent between the two experiments. In terms of results, while we share with
Haiduc et al. [146] findings about the importance of class-level comments for artifact label-
ing, our results also highlight that: (i) comments alone do not produce good labels, because
they contain several words that were discarded by humans. Instead, comments are useful
when combined with class signatures; and (ii) simpler heuristics considering class signatures
(possibly combined with comments) outperform IR techniques.

6.6 Summary

In recent years, researchers have applied various IR methods to “label” software artifacts by
means of some representative words, with the aim of facilitating their comprehension or just
to better visualize them. This section reported an empirical study aimed at investigating to

168

6.6. Summary

what extent a source code labeling based on IR techniques would identify relevant words in
the source code, compared to the words a human developer would have selected during a
program comprehension task.

We conducted two experiments, in which we asked 17 Bachelor’s Students and 21 Mas-
ter’s Students, respectively, to describe 10 classes taken from a software system using at most
ten words extracted from the class source code and comments. Then, we analyzed (i) what
kind of source code (and comment) elements were used by subjects to produce the labels;
(ii) to what extent the keywords identified using various IR techniques overlap with those
identified by humans; and (iii) what characteristics of the analyzed artifacts could influence
the effectiveness of the various techniques used to automatically produce labels. As possible
techniques, we considered VSM, LSI, LDA, and some ad hoc heuristics picking terms from
specific parts of the source code and comments.

Results show that overall there is a relatively high overlap between automatic and human-
generated labels, ranging between 50% and 90%. However, the highest overlap is obtained
by using the simplest heuristic, while the most sophisticated techniques, i.e., LSI and LDA,
provide generally the worst accuracy. One reason of the result is that developers mainly used
words from class names, method names and signatures, and (partially) from class and method
comments to label artifacts. We also found that the high entropy of terms in the classes in-
hibits the capability of topic modeling techniques—i.e., LSI and LDA—to efficiently identify
and cluster topics in source code. This result highlights that approaches such as LDA and LSI
are worthwhile of being used when analyzing heterogeneous collections, where documents
can contain information about multiple topics [141]. Unfortunately, such an heterogeneity is
not always present in source code artifacts. Thus, the ad-hoc heuristics experimented in this
study represent a valid approach to build high quality summaries of source code elements to
help new developers in program comprehension.

169

Labeling Source Code with Information Retrieval Methods

170

Part III

Recommenders

171

In this last part of the thesis, we discuss the possibilities to help projects newcomers in
specific moment of their life in OSS projects. Specifically, when a newcomer joins a software
project she needs to be trained from several points of view, (i) technical skills, (ii) projects
organization, or (iii) implementation details.

In Chapter 7 we propose an approach, named YODA (Young and newcOmer Developer
Assistant) aimed at identifying and recommending mentors in software projects by mining
data from mailing lists, issue trackers and versioning systems. Results indicate the potential
usefulness of YODA as a recommendation system to aid project managers in supporting
newcomers joining a software project.

Chapter 8 presents a recommender useful for code re-documentation. The usefulness of
such a tool is motivated by the fact that, very often, source code lacks comments that ade-
quately describe its behavior. In practice, the proposed approach mines messages exchanged
among contributors/developers, in the form of bug reports and emails, and extract useful de-
scriptions, that describe specific parts of the source code. We have evaluated the approach
on bug reports and mailing lists from two open source systems (Lucene and Eclipse), and the
obtained results suggest that the extracted method descriptions can help developers in under-
standing the code and could also be used as a starting point for source code re-documentation.

173

174

Chapter 7

Suggest Appropriate Mentors to
help Newcomers in Open Source
Projects

Contents
7.1 Motivation: Who is Going to Mentor Newcomers in Open Source

Project? . 179

7.2 How to Identify Mentors . 181

7.2.1 Who could be a good mentor? 181

7.2.2 Building the project committers’ communication network 183

7.2.3 Recommending mentors . 184

7.3 Empirical Study Definition . 185

7.3.1 Study Procedure . 185

7.3.2 Surveying project developers 188

7.4 Results . 191

7.4.1 RQ1: How can we identify mentors from the past history of a
software project? . 191

7.4.2 RQ2: To what extent would it be possible to recommend mentors
to newcomers joining a software project? 196

7.4.3 RQ3: How does mentoring activity affects the future trajectory of
a newcomer when she joins the project? 197

175

Suggest Appropriate Mentors to help Newcomers in Open Source Projects

7.5 Discussion . 198

7.5.1 Hints collected from project contributors 198

7.5.2 Examples of cases where YODA worked well and where not . . . 200

7.6 YODA Limitations and Threats to Validity 201

7.7 YODA tool support . 203

7.7.1 Integrating YODA in Eclipse 203

7.8 Related Work . 207

7.9 Summary . 208

176

Program comprehension is crucial to apply each maintenance activity and thus, crucial for
a newcomer to become active and terms of code changes. What a newcomer needs in such
situation is a good summary of code that help him/her in comprehension and maintenance
tasks. The previous Chapter motivates and reports an empirical study aimed at investigating
to what extent a source code labeling based on IR techniques would identify relevant words
in the source code, compared to the words a human developer would have selected during a
program comprehension task. In recent years, researchers have applied various IR methods to
”label” software artifacts by means of some representative words. Such ”summaries” can help
to improve the program comprehension of project newcomers that are join a software project.
Thus, the key goal of this section try to improve such summaries of source code artifacts with
the aim of facilitating their comprehension or just to better visualize them. These summaries
can be useful source of information from project newcomers in understanding source code.

Thus, the extracted descriptions can help projects newcomer in understanding the code
and could also be used as a starting point for source code re-documentation. However, when
newcomers join a software project, they need to be properly trained to understand the tech-
nical and organizational aspects of the project. Clearly, the source code comprehension it is
only a part of the technical skills that newcomer needs to properly acquire about a company.
Inadequate training could likely lead to project delay or failure. Thus, a proper newcomer
training and a good project environment are highly desirable because, can impact the prob-
ability of a newcomer to became a long term contributors [22]. The newcomers decision to
abandon the project can be influenced by several factors [18, 22]. For example, as previous
studies shown, there is a consequent low permanence rate of junior developers when they
did not receive any answers (any support) by senior developers in the project [19, 22]. We
argue that OSS projects, as well as, private Organizations need a proper newcomer training
that is very often in the reality, organized and structured in a formal way a collocating in a
formal training program called Mentoring Program. Let us to consider for example, for the
Apache Software Foundation developers community, the page of the mentoring program 1

that explains formally what a mentor has to do in that company and what a mentee can expect
from her mentor. In that page there is also the definition of Mentor: A community member
who makes a commitment to help a new contributor get started is a mentor. Thus, not all
committers are mentors and senior developers have the free choice to become mentor or not
of project newcomers.

In this Chapter we propose an approach, named YODA (Young and newcOmer Developer
Assistant) aimed at identifying and recommending mentors in software projects by mining
data from mailing lists and versioning systems. Candidate mentors are identified among

1https://community.apache.org/mentoringprogramme.html

177

Suggest Appropriate Mentors to help Newcomers in Open Source Projects

experienced developers who actively interact with newcomers. Then, when a newcomer joins
the project, YODA recommends her a mentor that, among the available ones, has already
discussed topics relevant for the newcomer.

YODA has been evaluated on software repositories of 7 open source projects. We have
also surveyed some developers of these projects to understand whether mentoring was actu-
ally performed in their projects, and asked them to evaluate the mentoring relations YODA
identified. Results indicate that top committers are not always the most appropriate men-
tors, and show the potential usefulness of YODA as a recommendation system to aid project
managers in supporting newcomers joining a software project. Finally, inspired by a work
by Zhou et al. [22] we verify whether a newcomer that receive mentoring by experienced
developers is more likely that she would stay with the project for a long time with respect to
newcomers that did not receive support by mentors of the project. We find that a properly
training by project mentors impacts the trajectory (career) of newcomers that are join the
project. We discover that well trained newcomers have an higher permanence in the project,
almost twice that of developers that do not receive any initial support.

178

7.1. Motivation: Who is Going to Mentor Newcomers in Open Source Project?

7.1 Motivation: Who is Going to Mentor Newcomers in
Open Source Project?

In the Star Wars imaginary Universe, YODA2 is known to have trained a large number of
young Jedi (youngling). Such a skill is equally important in software projects, where training
new developers is a crucial activity. When a newcomer joins a project, she needs to be trained
from many different points of view, such as project architecture and implementation details,
development guidelines, and organizational aspects. Training is often performed by one or
more mentors that, during the early stages of project participation for a newcomer, help her in
the work and actively discuss with her project details. Once the newcomer has been trained,
she can continue to work autonomously. A relatively similar process may occur in open
source projects, where, in most cases, the interaction between the mentor(s) and the new-
comer occurs through electronic means, e.g., mailing lists or issue tracking systems. A new-
comer would likely first start participating to discussion actively, and then would gradually
start to commit changes in the source code repository. Previous studies surveying software
projects indicated that mentoring of project newcomers is highly desirable [25]. Differently
from the problem of bug triaging—which requires to determine a developer who solved in
the past a similar task [189]—mentoring requires to find developers having the ability to ef-
fectively communicate and train other people. Hence, a good mentor is someone that (i) has
enough expertise about the topic of interest for the newcomer, and that (ii) demonstrated to
have enough ability to help other people.

In this Chapter we propose YODA (Young and newcOmer Developer Assistant) an ap-
proach to identify likely mentors in software projects by mining data from software reposi-
tories, and to support the project manager in recommending possible mentors when a new-
comer joins a project. YODA is inspired by the ArnetMiner3 search engine for academic
researchers in computer science, which identifies relations between students and advisors,
based on a series of heuristics [190]. Shortly, given a pair of researchers Jim and Alice, Ar-
netMiner suggests that Jim could have been the mentor of Alice based on four factors: f1:
Jim and Alice published together a large number of papers, f2: Jim has more publications
than Alice, f3: Jim is older than Alice in terms of activity, and f4: Jim and Alice started to
publish together as soon as Alice started her activity. Even if the student-advisor relation-
ship in academia is one-to-one, the metrics employed by ArnetMiner allow to also identify
one-to-many relationships.

To identify candidate mentors in the past history of a software project, we consider as

2http://starwars.wikia.com/wiki/Yoda
3http://arnetminer.org

179

Suggest Appropriate Mentors to help Newcomers in Open Source Projects

potential indicators on mentorship cases where (i) the mentor and the newcomer exchange
a large number of emails in the first phases of the newcomer activity, (ii) the mentor has
performed a larger activity in the project than the newcomer in terms of exchanged emails,
(iii) the mentor has a longer experience in the project than the newcomer, (iv) the mentor and
the newcomer start to exchange emails as soon as the newcomer joins the project, and (v)
the mentor is very active in terms of performed commits. The set of indicators above defined
is inspired to the ArnetMiner, although metrics being used are different: for example, co-
authorship is replaced by level of communication; plus, differently from ArnetMiner, YODA
needs to account both communication activity (measured in terms of exchanged emails) and
technical activity (measured in terms of commits). Once being able to identify likely mentors
in the past history of a software project, YODA recommends mentors each time a newcomer
joins the project, by selecting, among the candidate mentors previously identified, those who
discuss similar topics to what the newcomer is discussing.

We have evaluated YODA on data from seven open source projects, Apache httpd4,
Eclipse CDT5, the FreeBSD kernel6, JBoss Application Server7 (in following we refear with
JBossas), PostgreSQL8, Python9, and Samba10. First, we investigated which factors or com-
bination of factors provide more accurate indicator of mentoring. Then, we evaluated the ac-
curacy of YODA when recommending mentors for a newcomer. Finally, we also present the
results of a preliminary survey conducted with some people involved in the suggested men-
toring relationships of the seven projects to understand (i) whether what we identified was ac-
tually true, and (ii) to understand how mentoring was performed (and if it was performed) in
that project. Moreover, inspired by a work by Zhou et al. [22] we verify whether a newcomer
that receive mentoring by experienced developers is more likely that she would stay with
the project for a long time with respect to newcomers that did not receive any support. We
also implemented our approach in an Eclipse plugin, named YODA (available at the http:
//www.ing.unisannio.it/spanichella/pages/projects.html), that iden-
tifies and recommends mentors for newcomers joining a software project by mining develop-
ers’ communication (e.g., mailing lists) and project versioning systems.

The Chapter is organized as follows. Section 7.2 describes YODA, the approach pro-
posed to identify and recommend mentors. Section 7.3 describes the empirical study aimed
at evaluating YODA on the seven open source projects. Section 7.4 reports the study results.

4http://httpd.apache.org/
5https://www.eclipse.org/cdt/âĂŐ
6www.freebsd.org/
7https://www.jboss.org/
8www.postgresql.org/âĂŐ
9www.python.org/

10https://www.samba.org/

180

7.2. How to Identify Mentors

Section 7.5 provide further specific results together with a qualitative discussion of the empir-
ical study performed, while Section 7.6 discusses the limitations and threats to validity of both
YODA and of the study. Section 7.7 describes the Eclipse plugin YODA. Finally, Section 7.9
concludes the results of the study after a discussion of the related literature (Section 7.8).

7.2 How to Identify Mentors

To recommend mentors, YODA first identifies a list of available mentors by mining mailing
lists (and both issue trackers and mailing lists) and versioning systems. Then, it analyzes the
requests for help issued by a newcomer and identifies a list of candidate mentors that could
help her. The next sections detail the approach we use to (i) identify mentors from historical
data of existing projects; and (ii) to recommend mentors when a newcomer joins a project.

7.2.1 Who could be a good mentor?

To identify mentors in software projects, we define factors inspired by the ones ArnetMiner
uses. However, we replace the activity of co-authoring a paper with the activity of exchanging
emails and alternatively with the activity of exchanging emails together with the activity of
exchanging messages in issue trackers discussion. This, means that we have each social
metric inspired by ArnetMiner two versions: a first version that consider only (i) the social
activity of developers in mailing lists and a latter that considers both (ii) the social activity of
developers in mailing lists and issue trackers. In addition, we consider the technical activity
of a candidate mentor, in terms of number of commits. Specifically:

• f1: captures whether, after a newcomer joins a project, she mainly collaborates with a
specific person. We measure this as the percentage of emails a newcomer exchanges
with an older project member in the first period after joining the project, out of the
total number of emails exchanged in that period. Alternatively, we measure this as
the percentage of emails plus the percentage of messages in the issue tracker that a
newcomer exchanges with an older project member, out of the total number of emails
plus the number messages in issue trackers exchanged in that period.

• f2: captures the difference of the amount of discussion activity carried out by mentors
and newcomers in terms of the number of emails exchanged. Alternatively, we measure
this as the difference of the amount of discussion activity carried out by mentors and
newcomers considering both number of emails in the mailing list and the messages in
issue trackers.

181

Suggest Appropriate Mentors to help Newcomers in Open Source Projects

• f3: captures the “age” difference between the newcomer and the likely mentor, i.e., the
difference (in months) between the date when the newcomer exchanged her first email
(or the first message in the issue tracker if the date is earlier) in the project and the date
when the likely mentor did.

• f4: tells whether the mentor is one of the people the newcomer starts to collaborate first.
It is defined in terms of time difference (in months) between the first email exchanged
by a newcomer (or the first message in the issue tracker if the date is earlier), and the
first email (or the first message in the issue tracker if the date is earlier) the newcomer
exchanged with the likely mentor.

• f5: considers the number of commits performed by a candidate mentor, as an indicator
of the past technical activity performed by the candidate mentor.

To allow aggregating the five factors, we normalize them in the interval [0 . . . 1], and then
aggregate them into a score defined as

5∑

i=1

wi · fi (7.1)

where wi is the importance (weight) attributed to fi. Determining appropriate weights wi
for fi—and, as a consequence, also whether each of the fi is considered or not—is part of
the empirical evaluation and will be detailed in Section 7.3.1. It is important to note that
we aggregating the five factors as above described, considering mailing list data only or
alternatively considering both mailing list and issue tracker data. This means that we have
two versions of the score, a first version that aggregating the five factors obtained considering
only the mails data and a latter version of the score that that considers both mails and issue
data.

By using the score defined above, it is possible—from the past history of a project—to
rank all other developers with the aim of identifying the list of available mentors that can be
suggested to newcomers. The higher the rank, the higher the likelihood that the developer
played the role of mentor for the considered newcomer. Once the developers have been
ranked, a threshold is used to cut the ranked list and identify the top related developers that
represent the candidate mentors.

Defining a “good” threshold a priori to cut the ranked list is challenging, because a new-
comer could have one or more mentors. Thus, we use a scaled threshold t—used in previous
work on traceability recovery [169]—based on the values of the factors computed consider-
ing the newcomer i and the top developers in the ranked list ti = λ · TOPi, where TOPi is
the value of the factor between the newcomer i and the top developer in the ranked list, while

182

7.2. How to Identify Mentors

Table 7.1: Characteristics of the five projects analyzed, and of the training and test sets for evaluating YODA.
VARIABLE APACHE HTTPD ECLIPSE CDT FREEBSD JBOSSAS POSTGRESQL PYTHON SAMBA

Period 08/2001- 06/2002- 11/1998- 06/2001- 10/1998- 05/2000- 04/1998-
considered 12/2008 06/2012 10/2008 06/2012 03/2008 12/2008 12/2008
Size range (KNLOC) 271-850 45-1,528 3,552-7,853 642-1,272 223-522 464-683 156-1,157
Mailing list contribs (Mc) 6,726 89 23,872 112 2,935 20,827 3,411
Issue Tracker contribs (Ic) 5,769 2,179 2,646 2,759 5,628 326 4,984
Committers (Cm) 108 91 640 337 34 147 229
Mc ∩ Cm 66 87 393 105 29 147 226
Ic ∩ Cm 11 63 35 72 28 62 127
(Mc ∪ Ic) ∩ Cm 66 90 398 134 30 147 227
Emails exchanged byMc ∩ Cm 135,243 5,138 2,246,425 6336 44,244 7,479 19,073
Bugs reported/discussed by Ic ∩ Cm 2,498 9,193 9,964 96,7774 7,190 3,601 22,238

Period of 08/2001- 06/2002- 11/1998- 06/2001- 10/1998- 05/2000- 04/1998-
the Training Set 03/2002 06/2005 02/2000 06/2004 05/2001 05/2001 09/2000
Period of 04/2002- 07/2005- 03/2000- 07/2004- 06/2001- 06/2001- 10/2000-
the Test Set 12/2008 06/2012 10/2008 06/2012- 03/2008 12/2008 12/2008
Training/Test Set: Mails only
of mentors (training set) 18 42 81 42 17 28 31
of newcomers (training set) 11 31 30 34 8 28 31
of newcomers (test set) 11 31 30 34 7 28 30
Training/Test Set: Mails and Issues
of mentors (training set) 27 44 87 73 22 68 73
of newcomers (training set) 11 31 75 53 11 38 91
of newcomers (test set) 11 31 75 53 10 37 90

λ ∈ [0, 1]. The defined threshold is used to remove from the ranked list developers that have
a factor value lower than λ% of the factor value between the newcomer and the top ranked
developer.

7.2.2 Building the project committers’ communication network

We identify communication between developers by analyzing mailing lists and issue trackers
and by linking names/email in in such sources to committer IDs extracted from the versioning
repository. The link to versioning repositories is needed since we are interested to select
people who committed changes to the project repository.

Unifying Project Contributors’ Names

We use an approach similar to the one used by Bird et al. [27] and the one use by Canfora et
al. [45] as described in Section 2.2.2.

Extracting Developers’ Links

Once unified the names, we restrict our attention to commit authors’ only. This is because
we want to focus our attention to discussions occurring between people involved in code
changes only, rather than other people participating to the discussions.

Given two project’s members, Mi and Mj , we identify a link Mi ↔ Mj between them
in the different sources of information by applying the same heuristics used in Section 2.2.2.

183

Suggest Appropriate Mentors to help Newcomers in Open Source Projects

7.2.3 Recommending mentors

When a contributor joins a project, she needs to become knowledgeable on a specific (set
of) topic(s). The project manager needs to find a mentor for this newcomer, that is a con-
tributor that (a) demonstrated already to be a mentor in the past, and (b) actually worked/di-
scussed topics related to those the newcomer is going to work. As for requirement (a), we
use the method defined in Section 7.2.1 to identify available mentors in the past project his-
tory. Turning to requirement (b), we need to select among the available contributors that
demonstrated to be mentors in the past, the ones that had enough expertise on the topic(s)
which the newcomer is going to work on. Rather than proposing a novel approach to identify
the most appropriate mentor for a given topic, we use approaches similar to what proposed
in the past for bug triaging [189, 191, 192], which proposed to assign a bug to a developer
that in the past worked on a bug having a (textually) similar bug report. Specifically, let us
suppose a newcomer p joins the project at time tx, and let us consider the set of n mentors
M = {m1, . . .mn} identified using the method described in Section 7.2.1 in the period
before tx. We instantiate an IR [80] process to rank the available mentors, where each doc-
ument di with i = 1 . . . n consists of the union of the text of all emails exchanged by the
mentor mi before tx, while the query qp is represented by a request for help submitted by the
newcomer p. Alternatively, we instantiate a similar, IR process, where the only difference
is that we that consider as document, the union of the text of all emails together with issue
messages exchanged by the mentor mi before tx.

In a live setting—when YODA would be instantiated as a tool—the request for help can
be explicitly submitted by the newcomer when she joins the project. For the purpose of our
empirical study, since we are working on past data from open source projects, we simulated
the query by considering the union of the emails (or both emails and issue trackers messages)
sent by the newcomer during the first week when she joined the project, i.e., within one week
after the first email (or the first message in the issue tracker if the date is earlier). We consider
a week as a time span on the one hand long enough for a newcomer to send emails (or issue
tracker message) and precisely ask what kind of help she needs (e.g., taking the first email
only could be considered too vague), on the other hand not so long to have an unrealistic
scenario.

Both documents and query are processed by removing English stop words, performing
stemming using Porter stemming [156], and indexing the text corpus using word frequencies.
We use raw frequencies (tf) [80] rather than the widely used tf-idf [80] as our aim is to
mach similar corpus rather than to discriminate different documents, reason for what tf-idf
results useful. Then, we compare the query qp with each di using the asymmetric Dice

184

7.3. Empirical Study Definition

coefficient [80]:

Dicep =

∑N
j=1 tfjqp · tfjdi∑N
j=1 tfjqp · tfjqp

whereN is the size of the vocabulary of all words contained in our documents, tfjqp and tfjdi
are the raw frequencies of the jth dictionary term in the query and di, respectively. In other
words, the asymmetric Dice coefficient captures how much text of the newcomer’s request
for help is covered by the mentor’s emails (and issue tracker messages). We use it instead
of the cosine coefficient because the Dice coefficient does not penalize mentors having email
corpus that contains much text not contained in the newcomer’s request.

7.3 Empirical Study Definition

The goal of this study is to evaluate the performances of YODA in identifying mentors in
software projects, and in recommending mentors for project newcomers. The quality focus
is concerned with the capability to precisely identify and recommend mentors that (i) had
a mentoring experience in the past and (ii) have discussed topics related to the newcomer
needs. The context consists of discussions extracted from mailing lists/issue trackers and
changes extracted from versioning systems for seven open source projects, namely Apache
httpd, Eclipse CDT, the FreeBSD kernel, JBoss, PostgreSQL, Python, and Samba.

The seven projects are different in terms of size and application domain. Apache httpd is
an open-source HTTP server, Eclipse CDT is a C/C++ Integrated Development Environment,
FreeBSD is a free, open source Unix operating system, JBossas is an open source application
server written in Java, PostgreSQL is a database management system (DBMS), Python is a
well-known scripting language, and Samba a cross-operating system layer for printer and file
sharing. The top part of Table 7.1 reports key information about the seven projects and, above
all, of their mailing lists and versioning systems, namely project URL, time period analyzed,
size range in KLOC, number of mailing list contributors (Mc), number of committers in the
versioning systems (Cm), their intersection (Mc ∩ Cm), and number of emails exchanged
by Mc ∩ Cm, i.e., by the set of project contributors we considered. In addition, about the
issue tracker data, the table reports also the number of issue tracker contributors (Ic), the
intersection with committers in the versioning systems (Mc∩Cm) and number of messages
exchanged by Ic ∩ Cm.

7.3.1 Study Procedure

The study addresses the following research questions:

185

Suggest Appropriate Mentors to help Newcomers in Open Source Projects

• RQ1: How can we identify mentors from the past history of a software project? This
question aims at investigating whether particular combinations of the factors f1–f5 de-
scribed in Section 7.2.1 can be used to identify mentors, and how good are such com-
binations compared with some baselines, e.g., using as mentors the project managers
or the top project contributors.

• RQ2: To what extent would it be possible to recommend mentors to newcomers joining
a software project? This research question investigates how accurately
could YODA recommend a mentor—among those identified in RQ1—for a newcomer
that joins the project and is willing to work on a certain topic.

• RQ3: How does mentoring activity affects the future trajectory of a newcomer when
she joins the project? This research question investigates and compares the trajectory
of newcomers that had at least a mentor—among those identified in RQ1— in their
past with newcomers that did not receive support by any mentors. We want to verify
whether a newcomer that receives mentoring by experienced developers is more likely
that she would stay with the project for a long time.

To address RQ1, we use different combinations of f1–f5 to identify—for each newcomer
joining a project—a ranked list of candidate mentors, and then we evaluate them manually.
It is worthwhile to recall that such a metrics combination suggests a ranked list of candidate
mentors for each newcomer by observing the past project history, without however requiring
a training set (the approach is unsupervised) and that, in the context of RQ1 we are only
interested to see whether the f1–f5 metrics can identify good mentors, without checking
whether the mentor has appropriate skills required by the newcomer (we deal with such an
issue in RQ2).

First, we perform a calibration of the weights in equation (7.1). We consider different
possible combinations of f1–f5, i.e., all ones with equal weight, single factors alone, all
possible pairs, all groups of three, and four factors. It is important to note that, by considering
f5 (normalized number of commits) alone, we provide a sort of baseline for our technique,
because the number of commits is a metric often used to identify experts—or at least code
ownership [193]—in software projects [194].

Then, we give varying weights to the five factors, with the aim of investigating whether
there are factors that are more important than others. For example, for combinations of three
factors, say f1, f2, f3, we consider, other than the combination with equal weights, i.e.,
0.33 · f1 + 0.33 · f2 + 0.33 · f3, the following cases: (i) one factor weighted more than the
others, e.g., 0.5 · f1 + 0.25 · f2 + 0.25 · f3, and similarly for f2 and f3; and (ii) two factors
weighted more than the other, e.g., 0.4 · f1 + 0.4 · f2 + 0.2 · f3, and similarly for (f1, f3) or

186

7.3. Empirical Study Definition

(f2, f3).

As specified in Section 7.2, we applying the analysis described above varying the weights
of the five factors using in a first case (i) mailing list data only and alternatively considering
(ii) both mailing list and issue tracker data. We apply this ulterior analysis to verify whether
the results change if considering the two sources of information together.

To validate the candidate newcomer-mentor pairs, one of the authors and another PhD stu-
dent (not aware of how YODA works) manually inspected (independently, discussing cases
where they disagreed) the communication between the newcomer and the mentor. The pair
mentor-newcomer is classified as a true positive if there is a clear evidence of cases in which
the newcomer asked help to—and received help from—the mentor, otherwise it is classified
as a false positive.

To address RQ2, we split the project history into two periods, a first period (training set)
in which we identify the set M of people who have been identified as candidate mentors
using the most suitable combination of factors determined in RQ1, and a second period (test
set) for which we aim at recommending mentors for project newcomers. For each project,
we have chosen training and test set in order to have a balanced number of newcomers in the
two sets (see the bottom part of Table 7.1). It is important to note that we used in a first case
(i) mailing lists only, and in a second case (ii) both mailing lists and issue trackers to address
such research questions. Thus, we have two test sets and two training sets as reported in Table
7.1.

For each newcomer i identified in the test set, we identify the top k mentors (mj ∈ M)
that exhibit the most similar discussion to the newcomer request for help. For each possible
newcomer, we produce a ranked list of k recommended mentors, as in realistic scenarios it
can happen that the most suitable mentor is not available, and one has to choose the second-
best, the third-best, and so on. Since in the context of a post-mortem analysis of data from
open source projects like the one we are doing we do not have available other sources of
requests for help, we assume that the topic on which a newcomer requires helps is contained
in the first emails she exchanges in the project. We define below, in the study settings, how
the number of emails (or issue tracker messages) has been chosen. Then, for each newcomer i
in the test set, we identify mentor(s) using the approach described in Section 7.2.3, manually
validate it, compare with the recommended mentor, and report the number and percentage of
pairs for which the recommendation was correct or incorrect.

To address RQ3, we split the set of projects newcomers into two subsets, a first subset
in which there are the set Nm of people who had a mentor(s) when they joined the project
and a second subset in which contains Na of people that did not receive support by mentors.
Specifically, similarly to the work by Zhou et al. we consider a developer as a Long Term

187

Suggest Appropriate Mentors to help Newcomers in Open Source Projects

Contributor (LCT!) if she contributed to the project for at least 28 or more months. We use
such information to measure the longevity of the life of developers in the project. This means
that the first and the last date that a newcomer contributes to a project represent the timing
margins of her life in a project. To answer this research question we relying on both mailing
lists and issue trackers as sources of information. Consequently, we consider as developer
contribution (i) a change in the code, (ii) an email in the mailing list and (iii) a message
in the issue tracker. The first and last of these contributions of the developer constitute the
temporal margins of her time of permanence in the project. Moreover, to give a more precise
quantitative measure of the probability to become a LCT when a developer receive or not
mentoring (by experienced developers) we also computed the odds ratio (OR) [195] that
indicates how much an event to occur or not. In epidemiology, the odds ratio (OR) is one
of the indices used to define the relationship of cause and effect between two factors, for
example, between a risk factor and a disease. In such scenario, the calculation of odds ratio
includes the comparison between the frequencies of occurrence of the event (eg, disease) in
subjects exposed and those not exposed to the risk factor in the study, respectively. Formally,
in our context, the odds ratio is defined as the ratio of the odds p of an event occurring in
one sample, i.e., the set of newcomers that had a mentor and become LCTs (experimental
group), to the odds q of it occuring in the other sample, i.e., the set of newcomers that had
not a mentor and become LCTs (control group):

RO =
p/(1− p)
q/(1− q)

where an OR greater than 1 means that the event is more likely in first sample (newcomers
that had a mentor). Vice versa, an OR less than 1 indicates that the event is more likely in the
second sample (newcomers no mentored) while, an OR equal to 1 indicates that the event is
equally likely in both the samples.

7.3.2 Surveying project developers

As a further evaluation, after having identified candidate pairs of mentor-newcomer, we
surveyed these developers by sending them an email, explaining them the purpose of our
research activity, and asking them to complete an on-line survey questionnaire—built us-
ing SurveyMonkey11—asking questions about: (i) the experience as project contributor, and
whether the contributor is still active; (ii) whether the person mentored a project newcomer
and, if yes, how important was the mentoring perceived; (iii) whether the person was men-
tored when she joined the project, and how important was the mentoring in the decision to

11www.surveymonkey.com

188

7.3. Empirical Study Definition

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

18 19 20 21 22 23 24

P
re

ci
si

o
n

Number of newcomer‐mentor pairs

(a) Apache httpd

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

30 50 70 90 110 130 150

P
re

ci
si

o
n

Number of newcomer‐mentor pairs

(b) Eclipse CDT

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

23 25 27 29 31 33 35 37 39 41

P
re

ci
si

o
n

Number of newcomer‐mentor pairs

(c) FreeBSD

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

12 14 16 18 20 22

P
re

ci
si

o
n

Number of newcomer‐mentor pairs

(d) PostgreSQL

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

24 26 28 30 32 34 36 38 40 42 44 46 48

P
re

ci
si

o
n

Number of newcomer‐mentor pairs

(e) Python

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

30 32 34 36 38 40 42

P
re

ci
si

o
n

Number of newcomer‐mentor pairs

(f) Samba

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

37 62 87 112 137 162 187 212 237

P
re

ci
si

o
n

Number of newcomer‐mentor pairs

(g) JBossas

Figure 7.1: Mentor identification performances for the best combinations of f1–f5 and for the baseline (f5) consid-
ering mailing list data

189

Suggest Appropriate Mentors to help Newcomers in Open Source Projects

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

8 14 20 26 32 38 44 50

P
re

ci
si

o
n

Number of newcomer‐mentor pairs

(a) Apache httpd

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

30 50 70 90 110 130 150

P
re

ci
si

o
n

Number of newcomer‐mentor pairs

(b) Eclipse CDT

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

73 103 133 163 193 223 253 283 313 343

P
re

ci
si

o
n

Number of newcomer‐mentor pairs

(c) FreeBSD

0%

20%

40%

60%

80%

100%

120%

15 25 35 45 55 65

P
re

ci
si

o
n

Number of newcomer‐mentor pairs

(d) PostgreSQL

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

40 55 70 85 100 115 130 145 160

P
re

ci
si

o
n

Number of newcomer‐mentor pairs

(e) Python

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

70 120 170 220

P
re

ci
si

o
n

Number of newcomer‐mentor pairs

(f) Samba

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

37 62 87 112 137 162 187 212 237

P
re

ci
si

o
n

Number of newcomer‐mentor pairs

(g) JBossas

Figure 7.2: Mentor identification performances for the best combinations of f1–f5 and for the baseline (f5) consid-
ering mailing list and issue tracker data

190

7.4. Results

stay in the project; and (iv) which are the characteristics of a good mentor (e.g., experience,
communication skills, project knowledge).

In addition, the survey page showed to respondents a list of people that YODA highlighted
in the mentor-newcomer candidate pairs, asking them to tell, for each person, whether the
respondent (i) was actually the person indicated there, (ii) was a mentor for that person,
(iii) was advised by that person, or (iv) never got in touch with that person. We invited
to the survey 23 developers from Apache httpd, 19 developers from Eclipse CDT, 37 from
FreeBSD, 20 developers from JBossas, 15 from PostgreSQL, 27 from Python, and 37 from
Samba. The questionnaire was completed by 6 developers from Samba, 3 from FreeBSD, 3
from JBoss, 2 from PostgreSQL, 2 from Eclipse CDT and 1 from Python.

7.4 Results

This section reports the results of the empirical study.

7.4.1 RQ1: How can we identify mentors from the past history of a soft-
ware project?

Figure 7.1 and Table 7.2 report, for the seven projects we analyzed, the performances of
YODA in detecting mentors for all newcomers joining the project during the entire analyzed
time interval considering mailing list (only). In each subfigure of Figure 7.1, the x-axis in-
dicates the number of mentors that the approach can recommend when achieving a precision
shown on the y-axis. Vice versa, Figure 7.2 (contain the same information of Figure 7.1) and
Table 7.3 report, for the seven projects we analyzed, the performances of YODA in detect-
ing mentors for all newcomers joining the project during the entire analyzed time interval
considering both mailing list and issue tracker. As described in Section 7.3.1, we evaluated
the performance of YODA for all combinations of f1–f5, as well as for combinations hav-
ing varying weights. However, Table 7.2 and Table 7.3 only report a subset of the analyzed
combinations.

Specifically in Table 7.2:

• f1, i.e., the percentage of exchanged emails between newcomer and mentor. We no-
ticed that, if considering each of the f1–f5 factors alone, such a factor is the one that
produces the best performances.

• f5, i.e., the normalized number of commits performed by the candidate mentor. We
use this factor as a baseline, to determine whether an obvious choice of mentors, i.e.,
top committers, could be appropriate.

191

Suggest Appropriate Mentors to help Newcomers in Open Source Projects

Table 7.2: Precision (%) and number of newcomer-mentor pairs identified for different values of λ considering only
Mailing lists data.

System Formula λ = 100 λ = 90 λ = 80 λ = 70 λ = 60 λ = 50

Apache httpd

f1 83% 18 83% 18 83% 18 84% 19 84% 19 86% 21
f5(baseline) 56% 18 53% 19 55% 20 55% 20 52% 21 54% 26
0.33 · f1 + 0.33 · f2 + 0.33 · f3 83% 18 85% 20 82% 22 83% 24 80% 25 77% 26
0.33 · f1 + 0.33 · f2 + 0.33 · f4 78% 18 75% 20 77% 22 77% 22 77% 22 78% 23
0.5 · f1 + 0.25 · f2 + 0.25 · f3 89% 18 89% 18 81% 21 83% 23 79% 24 77% 26
0.5 · f1 + 0.25 · f2 + 0.25 · f4 78% 18 79% 19 79% 19 76% 21 78% 23 75% 24

Eclipse CDT

f1 88% 43 88% 43 85% 46 84% 49 83% 60 78% 72
f5(baseline) 57% 37 56% 43 57% 44 60% 47 59% 54 61% 75
0.33 · f1 + 0.33 · f2 + 0.33 · f3 81% 37 75% 53 65% 75 55% 103 48% 136 46% 168
0.33 · f1 + 0.33 · f2 + 0.33 · f4 84% 37 75% 52 68% 65 58% 93 51% 134 46% 161
0.5 · f1 + 0.25 · f2 + 0.25 · f3 92% 37 83% 54 66% 74 63% 87 56% 110 49% 148
0.5 · f1 + 0.25 · f2 + 0.25 · f4 89% 37 83% 53 72% 65 62% 82 56% 109 51% 140

FreeBSD

f1 26% 27 26% 27 26% 27 26% 27 25% 28 26% 31
f5(baseline) 17% 23 17% 23 17% 23 17% 24 17% 24 21% 29
0.33 · f1 + 0.33 · f2 + 0.33 · f3 17% 23 17% 24 17% 24 17% 24 19% 26 23% 31
0.33 · f1 + 0.33 · f2 + 0.33 · f4 30% 23 25% 28 20% 35 20% 35 21% 39 20% 40
0.5 · f1 + 0.25 · f2 + 0.25 · f3 13% 23 13% 23 17% 24 15% 27 20% 30 24% 33
0.5 · f1 + 0.25 · f2 + 0.25 · f4 35% 23 31% 26 24% 33 22% 37 21% 38 20% 41

JBossas

f1 90% 63 90% 63 91% 67 92% 73 90% 89 91% 97
f5(baseline) 65% 37 62% 39 62% 45 63% 54 62% 63 63% 71
0.33 · f1 + 0.33 · f2 + 0.33 · f3 79% 43 78% 76 72% 92 69% 137 63% 189 61% 221
0.33 · f1 + 0.33 · f2 + 0.33 · f4 89% 46 82% 83 66% 152 64% 194 60% 220 59% 241
0.5 · f1 + 0.25 · f2 + 0.25 · f3 81% 43 82% 68 82% 98 75% 130 65% 181 62% 211
0.5 · f1 + 0.25 · f2 + 0.25 · f4 89% 46 92% 71 80% 101 69% 153 65% 192 62% 221

PostgreSQL

f1 83% 12 85% 13 79% 14 79% 14 80% 15 80% 15
f5(baseline) 50% 12 50% 12 50% 12 56% 16 62% 21 64% 22
0.33 · f1 + 0.33 · f2 + 0.33 · f3 83% 12 76% 17 75% 20 65% 23 62% 26 55% 29
0.33 · f1 + 0.33 · f2 + 0.33 · f4 83% 12 77% 13 73% 15 76% 21 73% 22 70% 23
0.5 · f1 + 0.25 · f2 + 0.25 · f3 83% 12 77% 13 79% 14 75% 20 73% 22 70% 23
0.5 · f1 + 0.25 · f2 + 0.25 · f4 83% 12 79% 14 79% 14 79% 14 80% 20 76% 21

Python

f1 88% 24 88% 24 88% 25 82% 28 74% 31 70% 33
f5(baseline) 58% 26 58% 26 59% 27 59% 27 59% 27 59% 27
0.33 · f1 + 0.33 · f2 + 0.33 · f3 62% 26 68% 31 66% 32 64% 36 63% 40 61% 41
0.33 · f1 + 0.33 · f2 + 0.33 · f4 73% 26 75% 28 74% 34 63% 40 60% 45 57% 47
0.5 · f1 + 0.25 · f2 + 0.25 · f3 69% 26 71% 28 66% 32 64% 33 62% 39 60% 43
0.5 · f1 + 0.25 · f2 + 0.25 · f4 81% 26 81% 26 75% 32 65% 37 62% 42 58% 48

Samba

f1 87% 31 84% 32 84% 32 80% 35 80% 35 78% 37
f5(baseline) 53% 30 52% 33 52% 33 53% 34 53% 36 50% 42
0.33 · f1 + 0.33 · f2 + 0.33 · f3 77% 30 72% 32 69% 35 69% 36 66% 38 64% 42
0.33 · f1 + 0.33 · f2 + 0.33 · f4 73% 30 70% 33 68% 34 67% 36 63% 40 63% 41
0.5 · f1 + 0.25 · f2 + 0.25 · f3 77% 30 77% 31 69% 35 69% 35 68% 37 65% 40
0.5 · f1 + 0.25 · f2 + 0.25 · f4 80% 30 78% 32 78% 32 76% 33 72% 36 71% 38

• 0.33 ·f1+0.33 ·f2+0.33 ·f3 and 0.33 ·f1+0.33 ·f2+0.33 ·f4, because we considered
that the combination of f1 and f2 with either f3 or f4 produces the best results among
combinations obtained weighting all factors similarly.

• 0.5·f1+0.25·f2+0.25·f3 and 0.5·f1+0.25·f2+0.25·f4, i.e., again considering f1 and
f2 with f3 or f4, weighting f1 twice than the other factors. These are the combinations
able to achieve the best performances.

Vice versa, in Table 7.3:

• f1, i.e., the percentage of both exchanged emails and messages in the issue trackers

192

7.4. Results

Table 7.3: Precision (%) and number of newcomer-mentor pairs identified for different values of λ considering both
Mailing lists and Issue Trackers data.

System Formula λ = 100 λ = 90 λ = 80 λ = 70 λ = 60 λ = 50

Apache httpd

f1 75% 24 75% 24 75% 24 75% 24 77% 26 78% 36
f5(baseline) 67% 9 70% 10 73% 11 75% 12 75% 12 75% 12
0.33 · f1 + 0.33 · f2 + 0.33 · f3 53% 17 57% 23 56% 32 58% 40 61% 46 59% 49
0.33 · f1 + 0.33 · f2 + 0.33 · f4 82% 17 77% 30 81% 36 66% 44 60% 48 58% 50
0.5 · f1 + 0.25 · f2 + 0.25 · f3 76% 17 80% 20 69% 26 62% 37 63% 46 63% 46
0.5 · f1 + 0.25 · f2 + 0.25 · f4 82% 17 78% 23 78% 32 81% 36 71% 41 63% 46

Eclipse CDT

f1 59% 71 59% 71 59% 71 59% 78 60% 86 61% 88
f5(baseline) 59% 41 58% 45 59% 49 60% 50 55% 69 55% 82
0.33 · f1 + 0.33 · f2 + 0.33 · f3 73% 41 64% 70 52% 103 44% 149 40% 179 38% 204
0.33 · f1 + 0.33 · f2 + 0.33 · f4 74% 46 61% 69 48% 119 40% 166 38% 199 37% 217
0.5 · f1 + 0.25 · f2 + 0.25 · f3 80% 41 70% 57 59% 85 53% 112 44% 154 40% 189
0.5 · f1 + 0.25 · f2 + 0.25 · f4 74% 46 62% 65 58% 83 50% 122 42% 166 40% 194

Freebsd

f1 55% 181 55% 181 55% 181 56% 188 58% 198 58% 202
f5(baseline) 51% 73 50% 74 49% 76 49% 79 49% 80 49% 82
0.33 · f1 + 0.33 · f2 + 0.33 · f3 55% 105 49% 141 48% 192 48% 250 44% 304 42% 339
0.33 · f1 + 0.33 · f2 + 0.33 · f4 57% 108 57% 208 48% 285 42% 343 41% 355 41% 359
0.5 · f1 + 0.25 · f2 + 0.25 · f3 57% 105 54% 149 53% 195 50% 247 45% 307 42% 345
0.5 · f1 + 0.25 · f2 + 0.25 · f4 58% 108 59% 185 55% 229 47% 289 43% 343 41% 356

JBossas

f1 80% 86 81% 89 81% 96 80% 105 78% 120 78% 134
f5(baseline) 67% 63 63% 67 59% 78 60% 84 60% 97 62% 102
0.33 · f1 + 0.33 · f2 + 0.33 · f3 80% 74 76% 104 66% 108 61% 145 54% 290 52% 347
0.33 · f1 + 0.33 · f2 + 0.33 · f4 78% 74 77% 114 63% 192 58% 251 54% 314 50% 369
0.5 · f1 + 0.25 · f2 + 0.25 · f3 75% 73 75% 103 73% 133 67% 188 60% 257 56% 299
0.5 · f1 + 0.25 · f2 + 0.25 · f4 84% 74 77% 99 70% 141 65% 199 58% 263 54% 311

PostgreSQL

f1 95% 19 95% 20 95% 22 96% 23 96% 25 96% 26
f5(baseline) 94% 16 94% 18 95% 20 96% 23 92% 26 93% 27
0.33 · f1 + 0.33 · f2 + 0.33 · f3 94% 18 91% 23 79% 33 69% 42 64% 53 59% 71
0.33 · f1 + 0.33 · f2 + 0.33 · f4 94% 18 96% 24 96% 25 81% 37 61% 56 60% 65
0.5 · f1 + 0.25 · f2 + 0.25 · f3 94% 18 91% 23 92% 26 84% 31 74% 42 67% 51
0.5 · f1 + 0.25 · f2 + 0.25 · f4 94% 18 95% 21 96% 25 96% 26 88% 34 65% 54

Python

f1 79% 73 80% 74 80% 74 80% 79 80% 91 81% 95
f5(baseline) 83% 42 80% 45 79% 47 79% 48 78% 51 73% 56
0.33 · f1 + 0.33 · f2 + 0.33 · f3 71% 42 72% 60 64% 90 62% 114 58% 137 54% 170
0.33 · f1 + 0.33 · f2 + 0.33 · f4 93% 42 85% 55 84% 63 77% 88 69% 111 56% 154
0.5 · f1 + 0.25 · f2 + 0.25 · f3 81% 42 81% 58 76% 75 70% 99 63% 133 57% 169
0.5 · f1 + 0.25 · f2 + 0.25 · f4 91% 84 82% 73 72% 97 68% 130 56% 190 47% 238

Samba

f1 87% 87 87% 87 88% 90 88% 96 87% 106 86% 112
f5(baseline) 75% 71 75% 81 71% 96 66% 117 63% 138 62% 151
0.33 · f1 + 0.33 · f2 + 0.33 · f3 87% 71 74% 97 64% 135 58% 171 54% 220 52% 249
0.33 · f1 + 0.33 · f2 + 0.33 · f4 79% 71 77% 82 74% 94 69% 107 68% 118 68% 139
0.5 · f1 + 0.25 · f2 + 0.25 · f3 92% 71 86% 84 80% 99 69% 136 62% 163 56% 234
0.5 · f1 + 0.25 · f2 + 0.25 · f4 82% 71 80% 83 79% 92 78% 103 76% 118 69% 145

between newcomer and mentor. We noticed that also in this case, similarly with what
we found in Table 7.2, if considering each of the f1–f5 factors alone, such a factor
is the one that produces the best performances. However, with respect to the results
in Table 7.2, in Table 7.3 the difference betweens the results of f1 and f5 (that is the
baseline) is lower.

• f5, i.e., the normalized number of commits performed by the candidate mentor. We
use this factor as a baseline, to determine whether an obvious choice of mentors, i.e.,
top committers, could be appropriate.

• 0.33 ·f1+0.33 ·f2+0.33 ·f3 and 0.33 ·f1+0.33 ·f2+0.33 ·f4, because we considered

193

Suggest Appropriate Mentors to help Newcomers in Open Source Projects

that the combination of f1 and f2 with either f3 or f4 produces the best results among
combinations obtained weighting all factors similarly (as in Table 7.2).

• 0.5·f1+0.25·f2+0.25·f3 and 0.5·f1+0.25·f2+0.25·f4, i.e., again considering f1 and
f2 with f3 or f4, weighting f1 twice than the other factors. These are the combinations
able to achieve the best performances (as in Table 7.2).

Note that Figure 7.1 (and Figure 7.2) contains exactly the same information of Table 7.2
(except that we do not report the combination of f1, f2, and f3 or f4 with equal weights
since they are less interesting to be compared), and has the purpose of better allowing the
comparison of different combinations, whereas Table 7.2 (and Table 7.3) provides precise
figures.

In summary, the obtained results indicate that:

• f5 (number of commits) is not a very good indicator of mentorship (especially if we
consider data from mailing lists only). Also, f5 does not even provide a useful con-
tribution if used in combination with other factors. While it is true that a very active
committer can be expert on a particular topic, she might not be very willing (or able)
to exchange ideas and/or instruct other people. It is important to highlight this find-
ing for f5 vary if consider data from both mailing lists and issue trackers. Indeed, in
average the precision of such a factor improve for all the projects. However, results
achieved relying on f5 are not, in general, better than the results achieved relying on
social factors like f1.

• 0.5 · f1 + 0.25 · f2 + 0.25 · f3 and
0.5 ·f1+0.25 ·f2+0.25 ·f4 achieve the best performances, with a precision over 70%
and in many cases well above 80%. Also, it can be noticed that such a precision does
not decrease when decreasing λ, which means that the chosen combinations are able to
recommend a wider set of candidate mentors without sacrificing the precision.

• f1 alone tend to be as precise as the other combinations, and in some cases (Python
and Samba) even more precise than the combinations above. However, it is only able
to recommend a limited set of mentors even when decreasing λ. Although, in the
practice, a single mentor would suffice, having a good recall is desirable because (i)
not all candidate mentors may be available when needed, and (ii) among the candidate
mentors, we need to select those having the expertise required by the newcomer. Hence,
to obtain a good balance between precision and number of mentors (which as said
above does not mean to accept a very low precision), it is necessary to combine f1
(having however a higher weight) with f2 (rewarding mentors in general very active

194

7.4. Results

in discussions) and f3 (mentor/newcomer project age difference) or f4 (the newcomer
mainly collaborate with the mentor in her early stages). In summary, the percentage of
exchanged emails (and messages in issue trackers) per se is not enough to identify a
large set of candidate mentors.

• results in Table 7.2 and Table 7.3 are in general consistent with each other. However,
the number of newcomer-mentor pairs that we can achieve is higher in Table 7.3 with
respect to Table 7.2. This means that considering both mailing lists and issue trackers
impact positively the precision in the results of YODA; in addition, the number of
identified mentors (in general also the total number of developers and newcomers)
is higher when we consider all of these sources of information. Thus, the use of more
than one source of information helps to improve both recall (number of correct mentors
identified) and precision in mentors identification.

The results achieved also indicate that on FreeBSD YODA exhibits the lower perfor-
mances. Specifically, the precision is around 30% in Table 7.2 and 55% in Table 7.3. In this
case it is interesting to find that using both mailing lists issue trackers data we can mitigate
the very low performances in terms of precision that we obtain considering mailing lists data
only. For all other systems results are pretty higher and consistent. Our interpretation is that
such a result does not depend on the system size and on its number of project contributor.
In fact, on other systems having a high number of contributors (such as JBossas, Python or
Samba), YODA exhibits good performances. We believe that this can be due to the nature of
the discussion occurring in the FreeBSD mailing lists. By inspecting the emails we realized
that most of the discussion is one-to-many, i.e., people posting issues or suggestions to many
other people or to the whole mailing list. Although the way we analyze mailing lists allow
to treat—with some approximation many-to-many communications—the FreeBSD commu-
nication did not always exhibit dominant persons (potential mentors). This, clearly, makes
the identification of pairwise collaborations less precise.

RQ1 summary: It is possible to identify mentors—with a precision of 70% or
above—in the past history of a software project by using the combinations of factors
0.5 · f1 + 0.25 · f2 + 0.25 · f3 or 0.5 · f1 + 0.25 · f2 + 0.25 · f4. Considering top
committers is not a precise and reliable metric to identify mentors.

195

Suggest Appropriate Mentors to help Newcomers in Open Source Projects

Table 7.4: Number and percentage of correct and incorrect top 1 and top 2 mentor recommendations for newcomers
in the test set considering only Mailing lists.

TOP 1 TOP 2
SYSTEM Correct Wrong Correct Wrong
Apache 11 (85%) 2 (15%) 21 (81%) 5 (19%)
Eclips CDT 16 (80%) 4 (20%) 29 (76%) 9 (24%)
FreeBSD 10 (30%) 23 (70%) 16 (24%) 50 (76%)
JBossas 21 (95%) 1 (5%) 41 (95%) 2 (95%)
PostgreSQL 7 (100%) 0 (0%) 14 (100%) 0 (0%)
Python 20 (65%) 11 (35%) 48 (77%) 14 (23%)
Samba 31 (94%) 2 (6%) 54 (82%) 12 (18%)

Table 7.5: Number and percentage of correct and incorrect top 1 and top 2 mentor recommendations for newcomers
in the test set considering both Mailing lists and Issue Trackers.

TOP 1 TOP 2
SYSTEM Correct Wrong Correct Wrong
Apache 8 (80%) 2 (20%) 13 (72%) 5 (28%)
Eclips CDT 19 (86%) 3 (14%) 30 (71%) 12 (29%)
FreeBSD 36 (67%) 18 (33%) 48 (45%) 58 (55%)
JBossas 36 (95%) 2 (5%) 64 (86%) 10 (14%)
PostgreSQL 9 (90%) 1 (10%) 17 (89%) 2 (11%)
Python 20 (91%) 2 (9%) 36 (84%) 7 (16%)
Samba 33 (92%) 3 (8%) 55 (76%) 17 (14%)

7.4.2 RQ2: To what extent would it be possible to recommend mentors
to newcomers joining a software project?

To evaluate the recommendation method, we split the history of each project in a training
set and test set. The bottom part of Table 7.1 reports, for each project the time interval of
training and test sets, the number of mentors identified in the training set(s), and the number
of newcomers in the training set(s) and test set(s). As explained before, since we used in a (i)
first case mailing lists data only, and in a second case (ii) both mailing lists and issue trackers
data we have two test sets and two training sets as reported in Table 7.1.

Table 7.4 and Table 7.5 report the accuracy of YODA in recommending mentors for the
newcomers of the test sets when considering mailing lists data only and both mailing lists and
issue trackers respectively. We recommend mentors among those identified—in the training
set—using 0.5 · f1 + 0.25 · f2 + 0.25 · f3, which as explained in RQ1 exhibits in most cases
the best performances. In both the tables the left-side of each column reports the number
and percentage of correct and incorrect top 1 mentor recommendations for each newcomer
(ranked according to Dice asymmetric similarity), while the right-side reports the number
and percentage of correct and incorrect top 2 recommendations.

196

7.4. Results

As the Table 7.4 shows, the percentage of correct top 1 recommendations is very high,
above 80% except for Python, where it is 65%, and for FreeBSD, where it is 30% (for the rea-
sons explained in RQ1). Even when we consider the top 2 recommendations, the correctness
remains high, 76% or above—including this time Python where it increases to 77%—and
again with the exception of FreeBSD where it is 24%. Consistently with the results achieved
in Table 7.4, in the Table 7.5 we find that the percentage of correct top 1 recommendations is
higher than 80%, except for FreeBSD, where it is 65% (for the reasons explained in RQ1).
Even when we consider the top 2 recommendations, the correctness remains very high, 71%
or above and again with the exception of FreeBSD where it is 45%.

RQ2 summary:

• Mailing lists data: YODA is able to recommend mentors with a correctness
of about 65% or above for the top 1 recommendations and 77% or above
for the top 2 recommendations for all systems except FreeBSD, where the
percentages decrease to 30% and 24%, respectively.

• Mailing lists and Issue Trackers data: YODA is able to recommend mentors
with a correctness of about 80% or above for the top 1 recommendations and
71% or above for the top 2 recommendations for all systems except FreeBSD,
where the percentages decrease to 67% and 45%, respectively. Moreover,
the use of two sources of information helps to identify an higher number of
mentors in each project.

.

7.4.3 RQ3: How does mentoring activity affects the future trajectory of
a newcomer when she joins the project?

Table 7.6 reports, for the seven projects we analyzed, the number of newcomers that were
supported by mentors (Nm), the number of newcomers that did not receive any support (Na).
Moreover, the table reports, the number of newcomers that had a mentor and became LCT
(NmLCT

); the number of newcomers that had not a mentor and became LCT (NaLCT
). Then,

the table reports the average time of the permanence of each set of LCTs.
The results confirm the general finding of previous work that the majority of developers

(except JBossas and PostgreSQL) that join a project usually do not receive support by expe-
rienced developers [19, 22]. However, this percentage vary and depends very often from the
project size. For example, in PostgreSQL, the smaller project in terms of number of devel-
opers, the majority of newcomer have been supported by mentors of the project. Clearly, in

197

Suggest Appropriate Mentors to help Newcomers in Open Source Projects

Table 7.6: Joiners and LTCs.
Newcomers LCT Avg. Time (in years)

SYSTEM Nm Na NmLCT
NaLCT

NmLCT
NaLCT

OR
Apache 20 54 20 (100%) 41 (74%) 11,32 5,2 6,87

Eclips CDT 39 45 35 (90%) 29 (64%) 6,19 4,31 4,74
FreeBSD 80 197 80 (100%) 158 (80%) 9,78 5,28 19,63

JBossas 70 39 65 (93%) 31 (79%) 6,52 4,55 3,31
PostgreSQL 18 5 18 (100%) 4 (80%) 9,78 5,28 4,13

Python 42 54 42(100%) 33 (61%) 9,45 4,08 26
Samba 42 51 33 (79%) 20 (39%) 7,06 3,04 5,56

Average 95% 57% 8,59 4.53 10,03

this case this results is obvious because when the number of newcomers is very low senior
developers have more time to train them. What is more interesting is to observe in Table
7.6 is that the percentage of newcomers that become LCTs is higher for developers that had
at least a mentor(s) during the first period in the project. This finding is confirmed by the
results of the OR: (i) for all the project newcomers that had a mentor has, at least, three time
more chances to become LCTs with respect to newcomers that did not received any support;
(ii) considering all the projects, in average, this probability is superior, i.e., around 10 times.
Moreover, this finding correspond in a higher permanence (longevity in the project) of a new-
comer in the project. Specifically, as reported in Table 7.6 the average permanence (in years)
of these developers that are mentored by senior developers in the project is almost twice that
of developers that do not receive any initial support.

RQ3 summary: The results of our study, in agreement with others previous work,
feed the needed of mentoring of newcomers in software projects. A properly training
by project mentors impacts the trajectory (career) of newcomers that are join the
project. Well trained newcomers have an higher permanence in the project, almost
twice that of developers that do not receive any initial support.

7.5 Discussion

In the following, we provide additional, qualitative insights to the quantitative study reported
in Section 7.4.

7.5.1 Hints collected from project contributors

This section reports results we collected surveying project developers. Since we collected a
limited number of answers (17), we report aggregate data only for the purpose of explaining
how the respondents perceived the importance of the mentoring process.

198

7.5. Discussion

16

12

1

5

-1 4 9 14 19

Did mentoring?

Had a mentor?

YES NO

(a) Done/received mentoring

3

8

5

0

0

5

7

2

0

0

0 5 10

Very important

Important

Neutral

Not important

Useless at all

Effect of mentor Effect on newcomer

(b) Perceived importance of mentor-
ing

8

15

14

0

0 10 20

Experience

Communication skills

Project knowledge

Others

(c) What makes a good mentor

Figure 7.3: Survey questionnaire answers: generic questions on mentoring activity and its importance.

Figure 7.3(a) indicates that, out of 17 developers, 16 admitted to have been mentors, and
12 indicated that they were mentored by someone else. Figure 7.3(b) reports the perceived
importance of mentoring when respondents performed mentoring themselves or when they
were mentored. The effect was perceived very important (4) or important (9) for developers
performing mentoring, while when developers received mentoring, 6 developers indicated
that such activity is very important and 5 that it is important. In summary, developers indi-
cated that mentoring is important, although it seems that developers are more likely to admit
that they performed mentoring than they were mentored. Also, mentoring seems to be per-
ceived more important by developers that performed it rather than by developers that received
it.

Figure 7.3(c) reports what factor developers indicated to be important for good mentor-
ing. The respondents suggested it is mainly matter of communication skills (15) and project
knowledge (14), while only 8 developers indicated that experience can play an important
role. However, one of the respondents said “Maybe good communication skills is the least
important of the three above, if one is working closely together.”, thus the importance of
communication skills depends of the cohesiveness of the project team.

Some developers added comments to the survey to indicate that they performed/received
mentoring using communication means different from emails. For example, they added com-
ments like “Suggested work they can do. But mostly over IRC.”, or “Not only mailing lists,
but also IRC and direct communication.”

By classifying developers in the list we provided, the respondents indicated us a set of
38 mentor-newcomer pairs. We identified 18 of them correctly (the remaining 20 were not
identified), while we identified 3 pairs for which respondents indicated that mentoring did not
occur. Thus, with respect to the answers provided in the survey questionnaire, our approach
has a precision of 18/(18+3)=86% and a recall of 18/38=47%.

199

Suggest Appropriate Mentors to help Newcomers in Open Source Projects

James

Jelmer

Volker

Zack

Jeremy

Bjoern

Gerald

Love

Steve

Andrew

Herb

Stefan

Dmitry
Rishi

16

16

1

18

4

7
2

4

3

1

4
1 1

1

1

Lars

1

Christopher

1

2

(a) One week after Bjoern approached the
project

Gerald

James Volker

Jeremy

Stefan

Christopher

Jelmer

Alexander
DerrellZack

Bjoern

Steve
Nadezhda

Corinna

Tim

Steven

Love

Michael

Richard

Andrew

Kai

Shirish

Ed
HerbDmitryTimur

Ronnie

Rishi

Amin

David

62

71

69

12
7

26
211

18

12
1

6
3

1

2

4

1

8

5
2
1
2 1 1 1

1
3

1

2

1

1

Lars

1

4

1
3

Karolin1

(b) One year after

Figure 7.4: Example (from Samba) of developers’ network involving a newcomer (Bjoern) and a mentor (James).

7.5.2 Examples of cases where YODA worked well and where not

In the following we report some examples of collaborations and fragments of emails indi-
cating cases in which YODA worked well to identify mentors (RQ1) and cases where it did
not. Cases of true positives—confirmed by respondents of our survey—were made evident
by exchanges of email in which the newcomer clearly asked for help.

Figure 7.4 shows an example of newcomer (Bjoern)-mentor (James) network found in
Samba, when the newcomer approached the project by sending his first emails (Figure 7.4(a)),
and after one year (Figure 7.4(b)). Note that edges are labeled with the number of exchanged
emails. James had already a three-years experience (with 150 commits performed) when
Bjoern approached him. As it can be seen from the network, James has a high degree (=13),
and Bjoern mainly exchanges emails (4 emails exchanged) with James rather than with other
people. After one year, the social importance of James increase, as well as (to some extent)
the one of Bjoern, which however still has James as main contact (18 emails exchanged). The
mentoring relationship is also evident from fragments of their communication: “Hi James,
maybe you can bring some light into the dark here: I did some tests with . . . ”

Another example (confirmed by the survey respondent) is the one in Samba where Kai
asked Jeremy12 help because she wanted to contribute to the project “As you might know, I’m
a . . . student implementing NTLMSSP signing/sealing in Wine. I’ve worked on basic NTLM
authentication for Wine last year, using ntlm_auth. . . . I decided to give Samba4’s GENSEC
subsystem a try.”. Then, Jeremy responded with a detailed list of instructions answering Kai

12We do not report last names for confidentiality reasons.

200

7.6. YODA Limitations and Threats to Validity

specific technical questions, e.g. “This is the quickest way to make this work (IMHO).”,
“Probably second best solution.” (where Kai proposed two possible implementations), or
even discouraging Kai to implement some features “this will be a long long road to walk...”

One example of false negative is when the newcomer asked for help and the mentor never
(or seldom) responded. An instance of such a case was reported as a true mentoring in our
survey, however YODA did not detect it because of the low value of f1.

One example of false positive concerns the collaboration between Ivan and Robert in
FreeBSD. Robert helped Ivan to deal with some performance problem of the SSH protocol
implementation. Although also from the email it appeared clear that Robert—indicated as
candidate mentor by our approach—was the expert giving suggestions, very likely he helped
to solve a specific problem only, so to be considered as someone who helped Ivan, while not
really Ivan’s mentor.

Now we report hereby one case where mentoring recommendation (RQ2) worked and
one when it did not. When Lucien joined the Apache httpd project, he asked information
about proxy handling “I’m translating mod_proxy.xml, and I don’t understand what the term
worker means . . . ”. Then, after he received information about the meaning of this term,
he checked whether he correctly understood: “So, say we have this proxy configuration:
ProxyPass path1 server1, ProxyPass path2 server2 . . . ”. In summary, Lucien seems to be
interested to work on tasks related to proxy. YODA recommended him Joshua as a mentor,
which in the past helped someone else (Laurent) on a problem related to proxy: “ProxyPass-
Reverse only rewrites Location: headers”. That is, the email referred several times to the
terms Proxy and Pass, also contained in the early email sent by Lucien.

An example of false positive is between Takashi (newcomer) and Joshua (candidate men-
tor). Both the early emails of Takashi and previous emails of Joshua contained some com-
mon terms, such as “3D”, contained in XML and HTML fragments, e.g., “<note type=3D
"warning">” in the early email by Takashi and “<meta name=3D "generator"/ >” in pre-
vious emails by Joshua. However, the technical content of the emails was not very similar.

7.6 YODA Limitations and Threats to Validity

This section describes the limitations of YODA and the threats to validity of the study we
performed. We are aware that YODA is limited for the following reasons:

• It identifies mentor-newcomer pairs mainly based on their activity on mailing lists and
issue trackers. We are aware, however, as also reported in a paper by Aranda and Veno-
lia [34], that developers can communicate also outside mailing lists, e.g., using a chat.
One of the developers that responded to our survey “I’ve asked questions personally

201

Suggest Appropriate Mentors to help Newcomers in Open Source Projects

in private chats.” and when we asked if he helped someone else, he answered “Yes,
suggested work they can do. But mostly over IRC.”.

• It does not account for the availability of mentors. However, since YODA proposes a
list of mentors for a newcomer, the project manager can easily assign to the newcomer
a mentor that is currently available.

• It matches the expertise required by the newcomer with the expertise of possible men-
tors by comparing the early emails (or issue trackers messages) of the newcomer with
all emails (and all issue trackers messages) of the mentor. However, as we explained in
Section 7.2.3, it is not the purpose of this paper to propose a better method to identify
expertise, as others have been proposed already in the past [189, 191, 192].

Threats to construct validity concern the relation between the theory and the observation,
and in this work are mainly due to the measurements we performed. First, there could be
imprecisions in the way we mapped mailing list names and issue trackers with versioning
system IDs. However, we manually validated this mapping. In addition, for systems using
git (Apache httpd, Eclipse CDT, PostgreSQL, Python, and Samba) the mapping is straight-
forward in that full names and emails are used as git IDs.

The “age” of a developer is computed by observing the first email (or first trackers mes-
sages) exchanged, which might have occurred way before (or way after) the person joined
the project. Another aspect of our validation that is inherently subject to imprecision is the
manual validation of YODA recommendations. We limited the degree of error-proneness and
subjectiveness by having two different people performing the inspection independently.

Threats to internal validity concern external factors, we did not consider, that could affect
the variables being investigated. The factors we considered, f1–f5, are only a partial view of
the mentor and newcomer experiences, and of their inter-communication. There can be other
factors we did not consider. Future work will be devoted to consider other factors aiming at
mitigating such a threat.

Threats to external validity concern the generalization of our findings. We have performed
our study on data from seven different systems belonging to different domains and having
different size in terms of code base and number of developers. Further evaluation is how-
ever necessary, especially in industrial environments where there can be a tacit knowledge—
within an organization, but not encoded in the communications—of who can be a good men-
tor and who not.

202

7.7. YODA tool support

Data extraction and identification of available mentors

Mailing Lists
Data

extraction

Mentors
identification

Request
analysis

Extracted
data

List of available
mentors

John
Jane

...
Bob

Newcomer

Submit request
for help Request

Candidate mentors

Mentor recommendation

Versioning
systems

Figure 7.5: YODA in Eclipse: information flows.

7.7 YODA tool support

This Section describe YODA (Young and newcOmer Developer Assistant), an Eclipse plugin
that implements the approach described in Section 7.2 and that, based on the project source
code repository, its mailing list, and a query the newcomer explicitly makes (e.g., “I need
help on the network component protocol”), or a query inferred from the files opened by the
newcomer, is able to recommend appropriate mentors.

Section organization: subsection 7.7.1 introduces the Yoda Eclipse plugin and shows it in
action on a concrete scenario taken from the Samba project.

7.7.1 Integrating YODA in Eclipse

Fig. 7.5 depicts the YODA Eclipse plugin flow of information. Specifically, YODA extracts
communication information by parsing mailing lists downloaded from the project mailing
list archives, and retrieves information about changes performed by developers by retrieving
the commit logs from the versioning systems. Such information is stored in a fact database,
and is used to identify a list of candidate mentors to be recommended to newcomers/project
managers.

To use YODA, the developer (or project manager) has to set some preferences (including
various YODA parameters). Then, as shown in Fig. 7.6, she can mine data from mailing lists
and from the versioning system to identify mentoring relationships in the past project history.

203

Suggest Appropriate Mentors to help Newcomers in Open Source Projects

Figure 7.6: Mining candidate mentors from software repositories.

In the following, we will describe how YODA can be used from two perspectives: (i)
of a project manager, who wants to help various newcomers in the project, recommending
them appropriate mentors, and, in general, is interested to monitor project collaborations to
understand who is assuming a leadership role; and (ii) of a project newcomer, who is willing
to contribute to a feature involving some specific source code files, and needs some support
for her work. Our demonstration is based on data from the Samba project. For privacy reasons
we have anonymized last names in the screenshots.

Concerning the first perspective, the project manager—by selecting the “Mentorship graph”
from the YODA menu—can access a tab with a list of developers (Fig. 7.7(a)), and select a
developer for which one wants to understand the role played in the project. The list shown in
this tab already indicates whether the developer played the role of mentor, mentoree, or both.
After selecting a developer, it is possible to visualize a collaboration graph (Fig. 7.7(b)),
that starts from the selected developer and represents mentor/mentoree relationships up to a
given distance set in the YODA preference, e.g., only direct relations if the distance is one,
mentor/mentoree of developers mentored by the selected developers if the distance is two,
etc. For a given developer, green arrows are directed towards mentorees, while red arrows
are directed towards mentors. In our example of Fig. 7.7(b), we can see a graph starting
from Stefan M., and representing relations towards his mentors (Andrew B. and Jelmer V.)
and towards his mentorees (Sam L. and Anatoliy A.). It can be noticed that, for the sake of
simplicity, the oposite relations (e.g., red arrow between Sam L. and Stefan M.) are not shown.

Clicking on a specific developer—say Stefan M. in our case—a new tab (Fig. 7.7(c)), is
shown, from which it is possible to analyze detailed social and technical information of the
developer. Specifically, it is possible to know when the developer entered the project, the

204

7.7. YODA tool support

(a) Selecting a developer

(b) Mentorship graph

(c) Detailed information about a specific developer

Figure 7.7: How YODA (a) shows mentorship relations in a project and (b) allows to browse information about a
developer and to get in touch with him.

number of commits performed over different years, and the list of her mentors/mentorees. If
needed, the tool also allows to send an email to this developer.

Let us now see how YODA can be used from a newcomer’s perspective. In such a per-
spective, YODA allows a developer to formulate a request for help in two ways, namely, (i)
implicit query, based on the context—i.e., source code files—which the newcomer is (in-

205

Suggest Appropriate Mentors to help Newcomers in Open Source Projects

(a) Seeking experts about specific source code files (b) Getting available mentors with the desired exper-
tise

Figure 7.8: Mentor recommendation using an implicit query based on the context which the developer is working
on.

Figure 7.9: Explicit (natural language) request for mentor.

terested to) working on; or (ii) explicit query, i.e., by writing a natural language sentence
expressing the need for help on a particular topic, component, etc.

As for the implicit query, let us suppose a developer is working on a specific source
code file, say auth_sam_reply.c. By right-clicking (Fig. 7.8(a)) on the file name, and by
selecting the “Show mentor” from the YODA menu, it is possible to identify developers
that have enough expertise for such a file. The edge between the file and the developer
is labeled with a confidence value (between 0 and 1) corresponding to the Dice similarity
between the (implicit) query and the developer corpus. Among the various developers, YODA
can recommend—with a different, green edge, and with a different icon—the availability of
people that, besides being expert on the file also demonstrated to be good mentors in the past.

As for the explicit query, let us suppose a developer has a specific request for help. By
selecting the “Find mentor” from the YODA menu, it is possible to submit a request for help
and identify developers that have enough expertise for such a request (Fig. 7.9). Specifically,

206

7.8. Related Work

once submitted the request for help, YODA provides the newcomer with the list of candidate
mentors ranked according to the Dice similarity between the query and the developer corpus.

7.8 Related Work

There have been several researchers investigating what happens when a newcomer joins a
software project, and which are the factors for her growth, including mentoring. Our work
falls in the general area of those aimed at relating social relations among developers with
technical aspects of the project they are working on.

Dagenais et al. [25] studied, by surveying 18 IBM developers, what happens when some-
one moves into a new “project landscape”, making for her necessary to get acquitted with the
new environment. Among the factors they found important, it is worthwhile to mention the
need for early practicing, the availability of feedback for their work, and the need for getting
initial guidance. The latter is totally in agreement with what we collected from our small
survey, and motivates approaches like YODA. Fronza et al. [196] studied how newcomers
join agile projects, finding that pair-programming is used to initiate newcomers to a project.

Zhou and Mockus [22] investigated, on three industrial and three open source projects,
how the sociality level of a project in a particular moment influences the likelihood for new-
comers to become long-term contributors. They suggest the need for proper training plans for
newcomers in open source projects: this requires to identify appropriate mentors. Zhou and
Mockus [197] also identified challenges in a software market where offshoring, outsourcing
and open source development are increasing fast: understanding cultural differences, an-
alyzing how developers grow their expertise, and providing tools to facilitate newcomers’
learning, as YODA does.

A different perspective of developers’ growth in software projects was studied by Sinha
et al. [198] who investigated, on the Eclipse project, how project contributors become com-
mitters, and found that this depends on having contributed patches/source code of the project,
being active in other open source projects, or being part of the project organization. Also, Bird
et al. [199] investigated the phenomenon of “immigration” in software projects, explaining
the who, how and when in the process of providing to newcomers the authority to commit in
the project repository.

In summary, while all these works highlighted the need for supporting newcomers when
they join a software project, to the best of our knowledge this is the first work aimed at
proposing an approach to identify mentors in software projects and to recommend them to
newcomers.

In the past and recent years, other kinds of recommenders have been proposed to support

207

Suggest Appropriate Mentors to help Newcomers in Open Source Projects

developers—especially junior ones. Among others, Hipikat [200] provides recommendations
about components relevant for the current coding context of the developer. As discussed
in Section 7.2.3, identifying mentors also requires the selection of people having specific
expertise. This has been done by Anvik et al. [189], by Canfora and Cerulo [191], and by
Tamrawi et al. [192] who proposed approaches—based on machine learning (IR), IR, and
fuzzy clustering respectively—for bug triaging, i.e., to determine the most suited developers
able to fix an incoming bug.

7.9 Summary

Mentoring is particularly important to make software project newcomers knowledgeable of
various aspects of the project on which they are contributing, such as technical details, coding
guidelines, and organizational rules. As part of our study we contacted contributors to open
source projects, one of which mentioned “My general view is that it is very important that
mentor and mentee share at least the mindset and the same passions. My primary mentors
have been . . . and they both had a very strong technical background, something I definitively
wanted to match.” This Chapter proposed YODA, an approach to identify mentors by relying
on historical data from a software project, and then recommend them when a newcomer joins
the project. Being inspired by ArnetMiner—a tool that analyzes academic collaborations—
YODA identifies mentoring when the newcomer exchanges most of her emails with the men-
tor, and the mentor has a higher social importance and project age than the mentor. Then,
when a newcomer joins a project, her early discussion is used to identify the expertise she
is requiring, and YODA recommends, among the candidate mentors previously identified,
those who exhibited a discussion (textually) similar to the newcomer early discussion. YODA
has been evaluated on data from seven open source projects, Apache HTTPD, Eclipse CDT,
FreeBSD, JBoss AS, PostgreSQL, Python, and Samba. Results of the study indicate that,
except for FreeBSD, YODA is able to identify candidate pairs of mentor-newcomer with a
precision in most cases higher than 80%, and recommend them with a precision greater than
70%. Comments collected from project developers indicated us that mentoring is impor-
tant and depends on project knowledge and communication skills more than on experience.
Finally, results of our study, in agreement with other previous work, feed the needed of men-
toring of newcomers in software projects. A properly training by project mentors impacts the
trajectory (career) of newcomers that are join the project. Newcomers trained by mentors of
the project have an higher permanence (in year) in the project, almost twice of developers
that do not receive any initial support.

208

Chapter 8

Mining Source Code Descriptions
from Developer Communications

Contents
8.1 Motivation: incomplete and unclear code comments need to be re-

documented . 212

8.2 Mining Method Descriptions from Communications 214

8.2.1 Step 1: Downloading emails and tracing them onto classes 214

8.2.2 Step 2: Extracting paragraphs 215

8.2.3 Step 3: Tracing paragraphs onto methods 215

8.2.4 Step 4: Filtering the paragraphs 216

8.2.5 Step 5: Computing textual similarities between paragraphs and
methods . 217

8.2.6 Limitations of the proposed approach 218

8.3 Empirical Evaluation . 218

8.3.1 Threshold calibration . 219

8.3.2 Evaluation procedure . 220

8.3.3 Results . 223

8.3.4 Threats to validity . 224

8.4 Qualitative Analysis . 226

8.5 CODES tool: mining sourCe cOde Descriptions from developErs diS-
cussions . 230

8.5.1 Overview of the approach and its implementation in Eclipse . . . 231

209

Mining Source Code Descriptions from Developer Communications

8.5.2 CODES in action . 234

8.5.3 Performance Evaluation . 235

8.6 Related Work . 236

8.7 Summary . 237

210

In the Chapter 7 we propose an approach, named YODA (Young and newcOmer Developer
Assistant) aimed at identifying and recommending mentors in software projects by mining
data from mailing lists and versioning systems. Candidate mentors are identified among ex-
perienced developers who actively interact with newcomers. Then, when a newcomer joins
the project, YODA recommends her a mentor that, among the available ones, has already dis-
cussed topics relevant for the newcomer. Results indicate that top committers are not always
the most appropriate mentors, and show the potential usefulness of YODA as a recommen-
dation system to aid project managers in supporting newcomers joining a software project.

However, other kind of recommenders can be used to support developers in other task, like
for example, in code re-documentation. As discussed in the Chapter 6 source code summaries
can be a valid source to understand source code. However, very often, source code lacks
comments that adequately describe its behavior. In such situations developers need to infer
knowledge from the source code itself or to search for source code descriptions in external
artifacts.

We argue that messages exchanged among contributors/developers, in the form of bug
reports and emails, are a useful source of information to help understanding source code.
However, such communications are unstructured and usually not explicitly meant to describe
specific parts of the source code. Developers searching for code descriptions within com-
munications face the challenge of filtering large amount of data to extract what pieces of
information are important to them. We propose an approach to automatically extract method
descriptions from communications in bug tracking systems and mailing lists.

This Chapter presents a recommender useful for code re-documentation. The usefulness
of such a tool is motivated by the fact that, very often, source code lacks comments that
adequately describe its behavior. In practise, such approach mine messages exchanged among
contributors/developers, in the form of bug reports and emails, and extract useful descriptions,
that describe specific parts of the source code. We have evaluated the approach on bug reports
and mailing lists from two open source systems (Lucene and Eclipse). The results indicate
that mailing lists and bug reports contain relevant descriptions of about 36% of the methods
from Lucene and 7% from Eclipse, and that the proposed approach is able to extract such
descriptions with a precision of up to 79% for Eclipse and 87% for Lucene. The extracted
method descriptions can help developers in understanding the code and could also be used as
a starting point for source code re-documentation.

211

Mining Source Code Descriptions from Developer Communications

8.1 Motivation: incomplete and unclear code comments need
to be re-documented

Consider the following situation. A newcomer is reading the Java code of an unfamiliar (part
of the) system. She encounters a methods call. Ideally, a good method name would indicate
its purpose. If not, a nice Javadoc comment would explain what the goal of the method is.
Unfortunately, the method name is poorly chosen and there are no comments. Not an uncom-
mon situation. At this point, the developer has the choice of reading the implementation of
the method or searching the external documentation. It is very rare that external documenta-
tion is written at method level granularity (especially when comments are missing) and that
such specific information is easy to retrieve. The goal of our work is to help newcomers in
such situations. Specifically, we aim at providing newcomers with a means to quickly access
descriptions of methods.

Our conjecture is that, if other developers had any issues related to a specific method, then
a discussion occurred and someone described the method in the context of those issues. For
example, developers and project contributors communicate with each other, through mail-
ing lists and bug tracking systems. They often “instruct” each other about the behavior of a
method. This can happen in at least two scenarios. First, when a person (sometimes a new-
comer in the project) is trying to solve a problem or implement a new feature, she does not
have enough knowledge about the system, and asks for help. Second, when a person explains
to others the possible cause of a failure, illustrating the intended (and possibly also the unex-
pected) behavior of a method. For example, we report a paragraph for issue #1693 posted on
the Lucene Jira bug-tracking system1:

“new method added to AttributeSource: addAttributeImpl(AttributeImpl). Using
reflection it walks up in the class hierarchy of the passed in object and finds all
interfaces that the class or superclasses implement and that extend the Attribute
interface. It then adds the interface- instance mappings to the attribute map for
each of the found interfaces.”

which clearly describes the behavior of the AttributeSource: addAttributeImpl(AttributeImpl)
method.

We claim that unstructured communication between developers can be a precious source
of information to help understanding source code.

So, why newcomers could not use simple text search techniques, based on text/regular
expression matching utilities, such as, grep, to find method descriptions in communication

1https://issues.apache.org/jira/browse/LUCENE-1693

212

8.1. Motivation: incomplete and unclear code comments need to be re-documented

data? Such simple text matching approaches could only identify sentences having a method
name, or in general any regular expression containing the method name plus other strings
such as the class name or some parameter names. They would generate too many false
positives. As it happens for requirement-to-code traceability recovery [170, 201], such a
simple matching is not enough.

This study presents and validates an approach to automatically mine source code descrip-
tions (in particular method descriptions) from developer communications, such as, emails
and bug reports2. It also presents evidence to support our assumption that developer commu-
nications are rich in useful code descriptions.

Our approach traces emails to classes, identifies affirmative textual paragraphs in these
emails, and traces such paragraphs to specific methods of the classes. Then, it uses heuris-
tics (based on textual similarity between paragraphs and methods, and on matching method
parameters and other keywords to paragraphs) to filter out candidate method descriptions.

The filtering technique results in a set of one or more paragraphs describing each method
(for which a description was found). These paragraphs may overlap, in terms of content, or
they could describe different aspects of the method behavior, e.g., one describes the method
interface and return value, another the behavior in terms of calls to other methods, another the
exceptional behavior, etc. The technique retrieves all these paragraphs and combines them
into a method description. Such descriptions can have multiple uses:

[1] They can be used as such to help newcomers understanding the code.

[2] In perspective, an automatic tool can further process the descriptions and automatically
generate method documentation, e.g., API descriptions or comments.

We have applied the proposed approach to 26,796 bug reports from the Eclipse project,
and 18,046 emails and 3,690 bug reports from the Apache Lucene project. Results indi-
cate that emails and bug reports contain descriptions for about 7% of the Eclipse methods
and 36% of the Apache Lucene methods. The proposed filtering approach is able to correctly
identify method descriptions in 79% of the cases for Eclipse and 87% of the cases for Lucene.
Finally, we report several examples describing how methods are likely described in the de-
velopers’ communication, discussing the linguistic patterns we found in Eclipse and Lucene
for different kinds of method descriptions.

However, very often useful methods description are available also in the so called question−and−answer
sites such as StackOverflow. For this reason we adapted our approach in the context of this

2For simplicity, we will only refer to mailing lists/emails, although the approach is applicable to bug tracking
systems and other similar communications. Only where it matters we will refer to mailing lists and bug tracking
systems separately.

213

Mining Source Code Descriptions from Developer Communications

question and answer site to verify whether the proposed approach that is originally conceived
to mine method descriptions from mailing lists and issue tracker discussions is able to extract
useful descriptions also in StackOverflow. Thus, we implemented CODES (mining sourCe
cOde Descriptions from developErs diScussions), an Eclipse plugin that automatically ex-
tracts Java method descriptions from SO discussions.

The study is organized as follows. Section 8.2 describes the proposed approach. Sec-
tion 8.3 reports the empirical evaluation using data from Eclipse and Apache Lucene, while
Section 8.4 discusses some example of method descriptions found by the approach. Section
8.5 describes CODES, while Section 8.6 discusses the related work. Finally, Section 8.7
summaries the results of our empirical study.

8.2 Mining Method Descriptions from Communications

This section describes the proposed approach for mining method descriptions in mailing lists
or bug reports.

8.2.1 Step 1: Downloading emails and tracing them onto classes

First, we download mailing list archives and all bug reports concerning the analyzed time pe-
riod of the investigated projects. Then, we extract the body from emails using a Perl mailbox
parser (Mail::MboxParser). Bug reports (downloaded in HTML) are first rendered using a
textual browser lynx and then the text is extracted using a Perl script. Then, we trace emails
onto source code classes (referring to a system release before the email date). For this pur-
pose, we use two heuristics:

[1] We use an approach similar to the one proposed by Bacchelli et al. [202, 203]. More
specifically, we assume there is an explicit traceability link between a class and an
email whenever (i) the email contains a fully-qualified class name (e.g., org.apache.lucene.analysis.MappingCharFilter;);
or (ii) the email contains a file name (e.g., MappingCharFilter.java)—provided that
there are no other files with the same name, or that the file name is also qualified with
its path.

[2] For bug reports, we complement the above heuristic by matching the bug ID of each
closed bug to the commit notes, therefore tracing the bug report to the files changed in
that commit (if any are found).

214

8.2. Mining Method Descriptions from Communications

8.2.2 Step 2: Extracting paragraphs

During a preliminary investigation we determined—by inspecting emails from out case studies—
that paragraphs describing different aspects of the email topic are separated by one or more
white lines. Therefore, we use such heuristics to split each email into paragraphs. For bug
reports, different posts related to the same bug report are treated as separated paragraphs.

Emails often contain source code fragments and/or stack traces that should be pruned as
we are interested to mine descriptive text only (in future, we plan to keep such code fragments
into account to better link paragraphs to source code). To remove them, we used an approach
inspired to the work of Bacchelli et al. [204]. We computed, for each paragraph, the number
and percentage of programming language keywords and operators/special characters (e.g.,
curly braces, dots, arithmetic and Boolean operators, etc.). Paragraphs containing a percent-
age of keywords and special characters/operators higher than a given threshold are discarded.
Calibrating such a threshold requires a trade-off. We adopt a conservative approach and are
willing to accept losing a few good paragraphs. Similarly to what also shown in the study
by Bacchelli et al. [204], we found a threshold of 10% to be the best compromise between
losing good paragraphs and keeping source code fragments. Remember that our goal is to
provide precise descriptions to the developer in order to save time and effort.

A further processing—performed using the English Stanford Parser3 [205]—aims at pre-
serving only paragraphs in the affirmative form, removing those in interrogative forms—
because we assume that method description should not contain interrogative sentences—as
well as pruning out sequences of words that the parser was not able to analyze, i.e., sequences
of words that cannot be considered valid English sentences.

8.2.3 Step 3: Tracing paragraphs onto methods

To trace paragraphs onto methods, we first extract signatures for all methods in a system
version released before the email being analyzed. This is done using the Java reflection API.

Then, we identify the paragraphs referring a method. These paragraphs shall meet the
following two conditions:

• They must contain the keyword “method”. This is because we are searching sentences
like “The method foo() performs...”. Indeed, there could be cases where the method is
referred and described in a sentence not containing the keyword “method” (e.g., “foo()
performs...”). However, we observed in a preliminary analysis that such cases occur
mostly when the method is mentioned in other contexts (e.g., describing a fault) rather
than when communicating a method description to other people.

3http://www-nlp.stanford.edu

215

Mining Source Code Descriptions from Developer Communications

• They must contain a method name, among the methods of classes traced to the email
in Step 1. We also require that such a name must be followed by a open parenthesis—
i.e., we match “foo(” while we do not consider “foo”. This is to avoid cases when
a word matches a method name, while it is not intended to refer to the method. For
example, we found several paragraphs like that e.g., “Method patch”, where “patch()”
was actually a method of a class traced onto the email.

It is important to note that such a process can be subject to ambiguities. First, an email can
be traced onto multiple classes, having one or more method with the same name (and maybe
even the same signature). In such a cases, the paragraph is assigned to all of these classes.
Second, there may be overloaded methods. Where possible, this is resolved by comparing
the list of parameter names mentioned in the paragraph with the list of parameters in the
method signature as extracted from the source code. When this is not sufficient to resolve
the ambiguity, we conservatively assign the paragraph to all matched methods. As explained
later (Step 5) both ambiguities can be mitigated by computing the textual similarity between
the paragraph and the method.

8.2.4 Step 4: Filtering the paragraphs

We defined—based on the manual inspection of hundreds of emails— a set of heuristics to
further filter the paragraphs associated with methods.

These heuristics encode some observed rules of discourse commonly used by developers
in emails. The first heuristic concerns method parameters: it is required that, if a method has
parameters, at least some of them are mentioned in the method description. We count the
number and percentage of method parameter names mentioned in the paragraph. We define
a score, s1 as the ratio between the number of parameters mentioned and the total number of
parameters in the method. We consider s1 = 1 if the method does not have parameters.

We defined three additional heuristics that captures characteristics of three different cate-
gories of method descriptions, i.e., syntactic descriptions, description of how a method over-
loads/overrides another one, and descriptions of how a method performs its task by invoking
other methods.

[1] Syntactic descriptions (mentioning return values): if a method is not void, we check
whether the paragraph contains the keyword “return”. We define a score s2 equal to
one if the method is void, or if is not void and the paragraph contains “return”, zero
otherwise.

[2] Overriding/Overloading: keywords such as “overload” or “override” are likely to be
contained in some paragraphs describing methods. This, in particular, happens when a

216

8.2. Mining Method Descriptions from Communications

paragraph describes the additional behavior with respect to the overridden/overloaded
method. We define a score s3 equal to one if any of the “overload” or “override”
keywords appears in the paragraph, zero otherwise.

[3] Method invocations: when a paragraph describes a method, often it describes it in
terms of invocation of other methods. Therefore, we mine the paragraphs containing
for the words “call”, “execute”, “invoke”. We define a score s4 equal to one if any of
the “call”, “execute”, or “invoke” keywords appears in the paragraph at least once, zero
otherwise.

We apply the above described heuristics by constraining the set of selected paragraphs
such that s1 ≥ thP and s2 + s3 + s4 ≥ thH , where thP is a threshold we set for the
parameter heuristic and thH is a threshold for the other heuristics. Details about the two
thresholds are reported in Section 8.3.1.

8.2.5 Step 5: Computing textual similarities between paragraphs and
methods

After having filtered paragraphs using the heuristics, we rank them based on their textual
similarity with the method they are likely describing. The rationale is that, other than the
method name, parameter names, and other keywords identified in Step 4, such paragraphs
would likely contain other words (e.g., names of invoked methods, variable names, local
variables, etc.) contained in the method body. Also, as mentioned above, computing such a
similarity would help mitigating ambiguities when tracing paragraphs onto methods.

To this aim, we extract the method’s text from the system source code (again, referring to
a version before the email). This is done using the srcml analyzer [206]. Then, we normalize
the method text removing special characters, English stop words, and programming language
keywords, and splitting the remaining words using the camel case heuristics. A similar text
pruning is performed on paragraphs. After that, we index the paragraphs and the methods
using a Vector Space Model implemented with the R4 lsa package.

We compute the textual similarity between each paragraph Pk and the text of each traced
method Mi using the cosine similarity [80]. For each method Mi, we rank its relevant para-
graphs Pk by the similarity measure. Finally, we consider only the paragraphs that have a
similarity measure higher than a threshold thT . These are the paragraphs that are presented
to the user as containing a description to the method Mi. As it will be shown in Section 2.3,
varying thT will produce different results in terms of precisions and of retrieved candidate
method descriptions.

4http://www.r-project.org

217

Mining Source Code Descriptions from Developer Communications

8.2.6 Limitations of the proposed approach

Our proposed approach—to the best of our knowledge—represents the first attempt to mine
method descriptions from developers’ communication. As with any work that addresses a
problem in premiere, limitations exist, which we hope to address in future work. We high-
light here those that should be kept in mind while interpreting the results of our empirical
evaluation from the next section:

• We do not consider sequences of paragraphs that can describe the same method. In
some cases, a method description can be longer than one paragraph and thus span over
multiple paragraphs. A preliminary attempt at clustering subsequent paragraphs to the
ones that mention a method drastically lowered the precision of our approach. More
sophisticated approaches are needed to address this issue.

• Paragraphs often describe partial/exceptional behavior. In some cases, the paragraphs
describe only part of the method behavior, because the communication concerns only
that part. In other cases, the paragraphs describe exceptional behavior. We believe that
such paragraphs are useful to the developers to get a complete or partial overview of a
method’s syntax and behavior.

• We do not really mine abstractive method description, but rather extractive descrip-
tions. Since our technique uses textual similarities, it will recover paragraphs describ-
ing a method behavior only if this is done using (some of) the elements (e.g., names
of invoked methods, method parameters, local variables, etc.) contained in the method
body—a.k.a, extractive description. For example, our approach may not recover a para-
graph providing a high-level description of an algorithm (e.g., imagine a paragraph de-
scribing a sorting algorithm), which uses terminology not used in the implementation
of the method—a.k.a., abstractive description. However, mixed descriptions will likely
be retrieved by the approach.

8.3 Empirical Evaluation

The goal of this study is to evaluate the proposed approach for extracting method descrip-
tions from developers’ communications. The quality focus is the ability of the proposed
approach to cover methods from the analyzed systems, as well as the precision of the pro-
posed approach. The perspective is of researchers who want to evaluate to what extent mining
developers’ communications can be used to support code understanding and to what extent
the proposed approach is able to identify method summaries with a reasonable precision.

218

8.3. Empirical Evaluation

Table 8.1: Characteristics of the two subject systems.
Characteristic Eclipse Lucene
Analyzed Period 2001–2010 2001–2011
KLOC range 283-2,486 6–345
#of classes (range) 4,829–18,834 427–528
#of methods (range) 31,132–117,654 2,432–2,952
of bug reports 26,796 3,690
of emails – 18,045
of paragraphs from bug reports 202,539 115,504
of paragraphs from emails – 91,408
Total # of paragraphs 202,539 206,912

The context consists of bug reports from the Eclipse project and both mailing lists and bug
reports from the Lucene project. Eclipse5 is an open-source integrated development environ-
ment, written in Java. Lucene6 is a text retrieval library developed in Java. Table 8.1 reports
some relevant characteristics of the two systems and the data we used. While Eclipse can be
considered as a large system, Lucene is a small-medium system.

The empirical study reported in this section aims at addressing the following research
questions:

• RQ1 How many methods from the analyzed software systems are described by the
paragraphs identified by the proposed approach? While we do no expect to find de-
scriptions for all, or nearly all of the methods, we believe that the approach would be
useful in the practice only if finding descriptions for a given method would not be an
extremely rare event.

• RQ2 How precise is the proposed approach in identifying method descriptions? This
research question aims at determine whether the mined description are meaningful
method descriptions, or whether they are, instead, false positives. While some false
positives are unavoidable, too many of them would make the approach unpractical.

• RQ3 How many potentially good method descriptions are missed by the approach?
This research question aims at providing an idea of how the proposed approach is
affected by false negatives, i.e., filtering out good method descriptions.

8.3.1 Threshold calibration

Step 4 of the proposed approach relies on two thresholds, thP and thH . To calibrate thP ,
we analyze the distribution parameters referred to in the paragraphs traced onto methods.

5http://www.eclipse.org
6http://lucene.apache.org

219

Mining Source Code Descriptions from Developer Communications

For Eclipse, the percentage of parameters had a minimum and first quartile equal to zero, a
median=50%, and a third quartile and maximum equal to 100%. We selected the median as
threshold and analyzed the performance with different settings for thP varying it between
0% and 100% in 10% steps. We confirmed that the median choice works equally well for
Lucene. We realize that such a rule for selecting thP cannot be easily generalized, but it
worked for these two systems and for proof of concept purpose. Investigating the generality
of this rule is subject of future work.

Regarding thH , we set it to 1—i.e., accepting all cases where s2+ s3+ s4 ≥ 1—in order
to select paragraphs containing at least one keyword able to characterize the paragraph with
respect to the different kinds of method descriptions outlined in Step 4 of the approach. Once
again, identifying alternative rules for calibration, which generalize better, is subject of future
work.

The effect of the third threshold, thT , on the precision of the approach is analyzed in
detail in the following subsection.

8.3.2 Evaluation procedure

First, we extracted, using Steps 1-3 of the proposed approach, a set of candidate paragraphs
that are traced onto methods. We refer to them as the subset of traced paragraphs. After that,
we performed a first pruning using the heuristics from Step 4, i.e., selecting all paragraphs—
referred to as candidate descriptions from here on—having thP ≥ 0.5 and thH ≥ 1.

Subsequently, we computed the cosine similarities, with the aim of investigating how the
performance of the approach varies by considering only paragraphs having a cosine similarity
greater than a given threshold.

Then, we built the oracle against which to validate our results. The oracle was done by
manually validating a sample of the candidate descriptions. Since it was not possible to man-
ually validate all descriptions, we sampled 250 descriptions for each project. Such a sample
allows to achieve estimations with a confidence interval of±5% assuming a significance level
of 95% [207]. We decided not to perform a random sampling of the descriptions: since our
aim is to analyze how the precision and the method coverage vary with different thresholds of
the cosine similarity, we wanted to include in the sample enough data points representative of
different cosine ranges. Therefore, the most appropriate way to proceed was to apply a strat-
ified sampling. We divided our population of candidate descriptions in sets according to five
classes of cosine range: 0%-20%, 20%-40%, 40%-60%, 60%-80%, and 80%-100%. Then,
based on the distribution of descriptions over the different classes, we randomly sampled 25,
50, 100, 50, 25 descriptions for the five classes, respectively.

Then we asked three reviewers to analyze the sampled descriptions and decide whether

220

8.3. Empirical Evaluation

Table 8.2: Number of paragraphs and method coverage after applying filtering from Steps 2, 3 and 4 of the approach.
Filtering Eclipse Lucene

of method # of method
paragraphs coverage paragraphs coverage

Step 2 202,539 – 206,912 –
Step 3 42,095 22% 12,417 65%
Step 4 3,111 7% 3,707 36%

they were, or not, reasonable paragraph descriptions. Two reviewers were two of the work
authors (one of which did not know the detail of the mining algorithm at the time the val-
idation was performed, so not to bias such a validation), and the third reviewer was a PhD
student not involved in the work. To rate a description, the three reviewers had the system
source code available and checked whether the description is, indeed, one possible way a
method could be described, either in terms of its syntax, as extension of other methods, or
in terms of a method invocation chain. If all three reviewers agreed that a paragraph is a
specific kind of description for a method, then the paragraph was classified as true positive.
If all three reviewers agreed that a paragraph is not a good description for a method, then the
paragraph was classified as false negative. When they disagreed, they discussed until they
reached consensus. In the end, 500 paragraphs were included in the oracle.

To address RQ1 we considered all the methods in the analyzed systems, whereas for
RQ2 we only used the paragraphs in the oracle, in order to analyze how the method coverage
(RQ1) and the precision (RQ2) change when increasing the cosine threshold. We define
the method coverage for a given cosine threshold thT as the percentage of the methods in
the system for which there exists at least one candidate description traced onto it and such
that cos(mi, Pj) > thT . We define the precision for a given cosine threshold thT as the
percentage of true positives in the oracle for which cos(mi, Pj) > thT .

Addressing RQ3 is more difficult. We are aware that precisely assessing false negatives
would be impossible (it would require analyzing the entire body of emails). Instead, we ex-
tracted a small sample (100 paragraphs for each project, thus in total further 200 paragraphs)
from the set of paragraphs pruned after applying the Step 3 heuristics, i.e., all paragraphs that
can be mapped onto a method (and not all possible paragraphs, because we assume that a
paragraph describing a method at least mentions it), but do not satisfy our similarity-based
filtering. We manually validated the sample similarly to how we did it for the oracle, in order
to compute the percentage of false negatives in the sample.

221

Mining Source Code Descriptions from Developer Communications

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0
2

0
4

0
6

0
8

0

Cosine threshold

P
re

c
is

io
n

 /
 M

e
th

o
d

s
 c

o
ve

ra
g

e

Precision

% of Methods

58%

64%
66%

69%

79% 79%

71%

58%

7% 7% 6% 4% 3% 2% 1% 1%

(a) Eclipse

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0
2

0
4

0
6

0
8

0

Cosine threshold

P
re

c
is

io
n

 /
 M

e
th

o
d

s
 c

o
ve

ra
g

e

Precision

% of Methods

74% 77% 77% 78%
82%

87%

73%
70%

36% 34%
30%

25%
20%

15%

8%
4%

(b) Lucene

Figure 8.1: Precision and method coverage for different levels of similarity. Note that the maximum possible cover-
age would be (see Step 3 of Table II) 22% for Eclipse and 65% for Lucene.

222

8.3. Empirical Evaluation

8.3.3 Results

Table 8.2 reports results about the number of paragraphs obtained after applying steps 2,
3, and 4 of the approach, i.e. (2) the initial set of paragraphs extracted from the emails
after pruning out source code and irrelevant sentences (short and interrogative ones), (3) the
number of paragraphs traced to methods, and (4) the number of paragraphs traced to methods
that satisfy the filtering according to Step 4 heuristics i.e., paragraphs with thP ≥ 0.5 and
thH ≥ 1. The table also reports, for the last two cases, the percentage of covered methods.
As it can be noticed, about 20% of the Eclipse paragraphs and 5% of the Lucene paragraphs
can be traced to methods (Step 3), which ensures a coverage of 22% of the Eclipse methods
and 65% of the Lucene methods. However, such paragraphs do not satisfy the heuristics of
Step 4, nor they are constrained by any textual similarity threshold.

When applying the heuristics of Step 4, the number of paragraphs is reduced to 3,111 for
Eclipse and 3,707 for Lucene, which results in 7% method coverage for Eclipse and 36% for
Lucene.

Figure 8.1 reports the achieved precision and the method coverage for both Eclipse and
Lucene. The x-axis shows the increasing cosine similarity threshold, thT , while the y-axis
shows both the precision and the method coverage. Note that the precision is on a 0-100%
scale, whereas maximum coverage for Eclipse is 22% and for Lucene is 65%.

The results for both systems correspond to our expectations, i.e., increasing the cosine
threshold results in an increase in precision and it comes at the cost of reduced method cover-
age. An interesting phenomenon is that the increase in precision peaks (79% for Eclipse and
87% for Lucene) at a threshold of approximately 0.5 for both systems, which means that max-
imum precision can be achieved without complete loss of method coverage. In both cases,
the difference between the minimum and maximum precision is higher than the difference
between the minimum and maximum method coverage (proportionally). In other words, the
precision gain increases slower than the loss in method coverage. Method coverage in Eclipse
for highest precision is about 3% (which means covering between 933 and 3,530 methods,
depending on the version), and for Lucene is about 15% (which means covering between 365
and 442 methods).

We can summarize the results related to RQ1 (method coverage) and RQ2 (precision)
stating that, on the one hand, the proposed approach is precise enough to mine method de-
scriptions, thus reducing the developers’ burden to go through a wide number of false posi-
tives. On the other hand, the percentage of covered methods could appear as relatively low,
thus it is useful to pursue a compromise between coverage and precision. However, it is im-
portant to note that (i) we cannot really expect to find descriptions for all methods, especially
for large systems like Eclipse (for which, by the way, we do not have emails, but bug reports

223

Mining Source Code Descriptions from Developer Communications

only), and (ii) the coverage depends a lot on the quality—with respect to our goal of mining
descriptions—of the project discussion, which in our case seems to be better for Lucene than
for Eclipse.

Regarding RQ3—i.e., the presence of false negatives—the analysis of a sample of 100
paragraphs traced to methods, but not satisfying the Step 4 heuristic, indicates that, for
Eclipse, 78 out 100 paragraphs have been classified as true negatives, leaving 22 paragraphs
that could represent good method descriptions, but that were discarded by our heuristics. For
Lucene, 67 paragraphs were classified as true negatives, leaving a relatively large (33%) num-
ber of false negatives. Although this can be seen as a limitation of the proposed approach for
capturing good method description, this can be explained by the peculiar characteristics of the
Lucene mailing lists and bug reports, which contain many very good method descriptions, as
it has also been noticed from the high precision obtained for RQ2. As stated before, heuristics
that result in a better balance between a false negatives and false positive will be investigated
in the future. The current results are encouraging enough to motivate future research.

8.3.4 Threats to validity

This section describes the main threats to validity that can affect the evaluation of our results.
Given the kind of validation performed, it is worthwhile to mainly discuss threats to construct
and external validity.

Threats to construct validity mainly concern, in this context, the measurements we per-
formed to perform the evaluation. First, we are aware that, for assessing precision, we sam-
pled only a subset of the extracted descriptions. However, (i) the sample size limits the
estimation imprecision to ±5% for a confidence level of 95%, and (ii) to limit the subjec-
tiveness and the bias in the evaluation, three evaluators (one not involved in the work and
one not knowing the details of the approach) manually analyzed the sample. Another threat
to construct validity concerns RQ3. As explained in Section 8.3.2, it is always difficult to
perform a thorough assessment of false negatives. To deal with such a threat we evaluated
a sample of 100 paragraphs not detected by the proposed heuristics. The actual number of
false negatives in the entire system may be different than in the random sample.

Threats to external validity concern the generalization of results. We must remember that
the main aim of this work is to investigate whether mailing lists and bug tracking systems
are a useful source of information for understanding and potentially re-documenting source
code, and to propose a novel approach to mine such descriptions (at proof of concept level),
rather than to perform a thorough evaluation. The empirical evaluation here is limited to
mailing lists/bug reports from two systems only. Clearly, it is important to point out that
variables such as the project domain, the availability of mailing lists and bug reports (as well

224

8.3. Empirical Evaluation

Table 8.3: Examples of true positive paragraphs for Lucene.
Class Method Paragraph
AttributeSource addAttributeImpl New method added to AttributeSource: addAt-

tributeImpl(AttributeImpl). Using reflection it
walks up in the class hierarchy of the passed
in object and finds all interfaces that the class
or superclasses implement and that extend the
Attribute interface. It then adds the interface-
instance mappings to the attribute map for each
of the found interfaces. AttributeImpl now has
a default implementation of toString that uses
reflection to print out the values of the attributes
in a default formatting.

Scorer score This proposes to expose appropriate API on
Scorer such that one can create an optimized
Collector based on a given Scorer’s doc-id
orderness and vice versa. QueryWeight im-
plements Weight, while score(reader) calls
score(reader, false /* out-of-order */) and
scorer(reader, scoreDocsInOrder) is defined
abstract. One other optimization is to expose
a topScorer() API (on Weight) which returns a
Scorer that its score(Collector) will be called,
and additionally add a start() method to DISI.
That will allow Scorers to initialize either on
start() or score(Collector).

Query weight The method Query.weight() was left in Query
for backwards reasons in Lucene 2.9 when we
changed Weight class. This method is only
to be called on top-level queries - and this
is done by IndexSearcher. This method is
just a utility method, that has nothing to do
with the query itsself (it just combines the cre-
ateWeight method and calls the normalization
afterwards). For 3.3 I will make Query.weight()
simply delegate to IndexSearcher’s replace-
ment method with a big deprecation warning,
so user sees this. In IndexSearcher itsself the
method will be protected to only be called by
itsself or subclasses of IndexSearcher.

225

Mining Source Code Descriptions from Developer Communications

Table 8.4: Examples of true positive paragraphs for Eclipse.
Class Method Paragraph
ServiceLoader ServiceLoader Similarly to osgi services, the java ser-

viceloader takes the name of the class for
which you want a service. In the present case,
we want an instance of the JavaCompiler ser-
vice, so the actual call being made is: Ser-
viceLoader.load(javax.tool.JavaCompiler) This
method returns an iterator on all the services
available.

Wizard addPages In the particular case of the NewLocationWiz-
ard, you should be able to get around it by
creating a protected createMainPage method
which you can override in the subclass. You
can then call super.addPages() from the sub-
class (Wizard) add pages to avoid the duplica-
tion of the setting of the properties. I still don’t
think that "alternative" is the proper term to use
everywhere.

GC drawString The -1 value for bidiLevel is correct since it in-
dicates that you’re not using bi-directional text.
As Randy mentioned, this might be a GDI+ is-
sue that got introduced in 3.5. Create an SWT
GC, invoke setAdvanced(true), and then use its
drawString() method to draw some text in your
language. Also try drawText().

as their quality) could influence the performances of the proposed approach. Therefore, a
more extensive evaluation with data sets from further systems is highly desirable. Last but not
least, the generalization of the heuristics calibration cannot be guaranteed by our evaluation.

8.4 Qualitative Analysis

This section provides a qualitative analysis of some exemplar paragraphs, identified during
the manual validation. The aim is to: (i) show examples of the various kinds of descriptions
that the approach is able to mine; (ii) explain why the approach, in some cases, detected
false positives; and (iii) explain why the approach missed some good descriptions, i.e., false
negatives. In summary, starting from what we collected during our validation, it is possible
to classify the retrieved paragraphs as follows:

• True positive paragraphs: these are paragraphs identified by the proposed approach,
that the human validation classifies as properly describing a given method. Such para-
graphs can be used to help understanding the source code or to re-document it.

• False positive paragraphs: these are paragraphs identified by the proposed approach,

226

8.4. Qualitative Analysis

Table 8.5: Examples of false positive paragraphs for Eclipse.
Class Method Paragraph
Table releaseWidget Similar (and related) NPE is on

Table class, on releaseWidget()
method call - the last element in
columns[] array is null.

WorkbenchPart dispose It must be the last method
called on the contribution item.
After calling dispose(), it is a
bug to continue using the con-
tribution item

OperationCanceledException OperationCanceledException On thinking about it, throw-
ing OperationCanceledExcep-
tion would be unusual since
the method does not take
a progress monitor parameter.
Returning a CANCEL status
seems like the best approach.

however, based on the human validation, they do not really have the purpose of provid-
ing a method description. Such paragraphs reduce the precision of the approach.

• True negative paragraphs: these paragraphs are not selected by the proposed approach
and, indeed, they do not describe methods, while they possibly refer to a method for
other purposes.

• False negative paragraphs: these paragraphs are discarded by the proposed approach,
however they represent good method descriptions.

The examples reveal several discourse patterns that characterize true positive, false posi-
tive, and false negative method descriptions. Regarding true positives, these paragraphs are
always composed of sentences in affirmative form, directly explaining a method’s syntax or
behavior. For Lucene (Table 8.3), the first true positive example is a clear description of the
addAttributeImpl method from the AttributeSource class. In this case, the developer initially
informs others about the introduction of a new method and after that he explains what the
method does: “finds all interfaces that the class or superclasses implement and that extend
the Attribute interface” and “adds the interface or instance mappings to the attribute map for
each of the found interfaces”. This paragraph was extracted from a list of candidate descrip-
tions with highest score (cosine=0.74), where each of these paragraph refer to 100% of the
method parameters, in this case addAttributeImpl. We can find only phrases in affirmative
form without sentences in dubitative form.

In same way, for Eclipse (Table 8.4) if we observe the first true positive example—
describing the constructor ServiceLoader—we can find a paragraph in affirmative form with-
out sentences in dubitative form. It is important to note that this paragraph, with respect to

227

Mining Source Code Descriptions from Developer Communications

Table 8.6: Examples of false positive paragraphs for Lucene.
Class Method Paragraph
MultiReader isOptimized These 3 methods should probably be

fixed: isOptimized() would fail - sim-
ilar to isCurrent() setNorm(int, String,
float) would fail too, similar reason. di-
rectory() would not fail, but fall to re-
turn the directory of reader[0]. This
is because MultiReader() (constructor)
calls super with reader[0] again. I am
not sure.

SegmentReader termDocs Yes, but this class is package pri-
vate and unused! AllTermDocs is
used by SegmentReader to support ter-
mDocs(null), but not AllDocsEnum.
The matchAllDocs was just an exam-
ple, there are more use cases, e.g.
a TermsFilter (that is the non-scoring
TermQuery variant): Just use the Doc-
sEnum of this term as the DicIdSetIter-
ator.

TopDocsCollector topDocs We might also consider deprecating the
topDocs() methods that take in param-
eters and think about how the paging
collector might be integrated at a lower
level in the other collectors, such that
one doesn’t even have to think about
calling a diff. collector

the first example paragraph of Lucene, obtained highest rank because if refers to 100% of
the parameters of ServiceLoader and it contains the keywords “call” and “return” and thus
it describes the method in terms of invocation of other methods and in terms of its returned
value (syntactic descriptions).

If we look at false positives, for Eclipse (Table 8.5) we can notice examples of descrip-
tions that are too specific (e.g., for the releaseWidget method), hence not particularly useful
to properly understand the entire method. Other examples are related to faulty behavior (dis-
pose) and about a possible bug fixing (constructor of OperationCanceledException). For
Lucene (Table 8.6), the candidate description of the isOptimized method from the Multi-
Reader class consists, actually, in a proposal of bug fixing for several methods. Regarding
the termDocs method from the SegmentReader class, the paragraph mainly describes depen-
dencies among methods rather than describing method behavior. In some sense, this could

228

8.4. Qualitative Analysis

Table 8.7: Examples of false negative paragraphs for Eclipse.
Class Method Paragraph
JavaStringDoubleClickSelector doubleClicked What it does is: - change the behavior

of the doubleClicked() methods to also
consider the endpoint of the mouse se-
lection for its calculation of the text se-
lection.

Engine accept If I understood TypeDescrip-
tor.initialize() method correctly,
it is not interested in the method
code, so you could use class-
Reader.accept(visitor, Class-
Reader.SKIP_CODE) to completely
skip all methods code from visiting.
Same applies to implementation of
SearchEngine.getExtraction(..) and
TagScanner.Visitor.getMethods(..)
methods, where you also can add
ClassReader.SKIP_CODE to avoid
visiting method code.

also be considered a true positive (e.g., useful to understand method dependencies), although
our evaluators classified it as a false positive because the paragraph did not clearly describe
the method behavior. The last case (the topDocs method from the TopDocsCollector class)
is a paragraph where people suggest to deprecate such a method and integrate the behavior
elsewhere. Also in this case, the description could be, in principle, considered a useful one,
although it was not considered as such because the paragraph described the behavior to be
refactored. In conclusions, false positives either concern borderline cases—which could be
useful in some cases and hence increase the amount of useful material a developer has to
comprehend the source code—or cases such as faulty or future behavior which would not
easy to discern automatically. This also suggests that the results strongly depend on the data
source we use (i.e., the content of the emails and, above all, of the bug reports), indicating that
some sources, such as bug reports, in some case contain descriptions that are not appropriate
for describing the correct, current behavior of a method.

Finally, concerning the false negatives (Tables 8.7 and 8.8 for Eclipse and Lucene respec-
tively), many of them were descriptions discarded because they describe the methods without
containing keywords (such as, “return”, “override”, “invoke”, etc.) we used for filtering. For
example, in the case of Lucene, the paragraph referring to the optimize method from the In-
dexWriter class contains the sentence “I found that IndexWriter.optimize(int) method does...”
containing the class name and method name, yet it does not contain any of the above key-
words. A similar situation occurs for the parse method from the TrecFTParser class. Similar
examples can be found in Eclipse, where the doubleClicked method from the JavaString-

229

Mining Source Code Descriptions from Developer Communications

Table 8.8: Examples of false negative paragraphs for Lucene.

Class Method Paragraph
IndexWriter optimize I found that IndexWriter.optimize(int)

method does not pick up large seg-
ments with a lot of deletes even when
most of the docs are deleted. And the
existence of such segments affected the
query performance significantly. I cre-
ated an index with 1 million docs, then
went over all docs and updated a few
thousand at a time. I ran optimize(20)
occasionally. What saw were large seg-
ments with most of docs deleted. Al-
though these segments did not have
valid docs they remained in the direc-
tory for a very long time until more seg-
ments with comparable or bigger sizes
were created.

TrecFTParser parse In TrecFTParser.parse(), you can ex-
tract the logic which finds the date and
title into a common method which re-
ceives the strings to look for as param-
eters (e.g. find(String str, String start,
int startlen, String end)).

DoubleClickSelector class is, again, described properly, yet none of the filtering keywords is
mentioned. In conclusion, this suggests that some false negatives could have been avoided
by weakening the filtering criteria, however this would also have reduced the precision and
hence would have increased the amount of (possibly useless) descriptions a developer has to
browse.

8.5 CODES tool: mining sourCe cOde Descriptions from
developErs diScussions

This Section describe CODES (mining sourCe cOde Descriptions from developErs diScus-
sions), an Eclipse plugin that automatically extracts Java method descriptions from SO dis-
cussions. The plugin implements a description-mining approach described in Section 8.2,

230

8.5. CODES tool: mining sourCe cOde Descriptions from developErs diScussions

which was originally conceived to mine method descriptions from mailing lists and issue
tracker discussions. The approach has been adapted to mine SO discussions too, plus it is
now able to group together multiple candidate discussions for the same artifact (and remove
duplicates). CODES can be used for re-documentation purposes in two different scenarios:
(i) the original developers can rely online discussion to better re-document their own code,
or (ii) a system integrator downloads some scarcely documented third-party source code, and
needs to understand it.

Specifically, the following paragraphs describe how CODES extracts candidate method
documentation from StackOverflow discussions, and creates Javadoc descriptions from it. We
evaluated CODES to mine Lucene and Hibernate method descriptions. The results indicate
that CODES is able to extract descriptions for 20% and 28% of the Lucene and Hibernate
methods with a precision of 84% and 91% respectively.

8.5.1 Overview of the approach and its implementation in Eclipse

This section summarizes the approach behind CODES. Further details can be found in in
Section 8.2 (and our previous work [13]).

Figure 8.2 depicts the CODES Eclipse plugin flow of information. First, the developer
selects the list of classes that she wants to re-document. Then, Java Reflection API is used
to perform an introspective analysis of the classes to be re-documented, with the aim of
retrieving information about its methods, i.e., parameters, return value and the name of the
method. After the introspective analysis, CODES uses the SO search engine to search the set
of discussions that describe a given Java method, using as search keys project name + class
name + method name. More precisely, CODES passes the search key to SO through its REST
interface, i.e., through the URL7. Then, the SO search engine returns back the URLs of the
of discussions relevant to the formulated query. Such discussions are composed of Questions
and Answers.

By using regular expressions, CODES checks whether the Questions contain the name of
the project and discards the discussions related to other projects. Note that for this purpose
we do not rely on SO tags exclusively, because they are not used consistently. After that, the
set of URLs is further restricted to discussions traced to the class to be re-documented. This
is done using an approach inspired by the one proposed by Bacchelli et al. [203], i.e., it works
by matching the class name (or fully qualified class name when possible) in the discussion.

Then, CODES processes paragraphs contained in the SO Answers. In particular, we con-
sider answers that are voted by at least one SO user. To this end, we search for paragraphs that
contain words matching names of methods of the classes to be documented. We are aware

7http://stackoverflow.com/search?q=search keys

231

Mining Source Code Descriptions from Developer Communications

Figure 8.2: CODES information flow.

that this does not guarantee yet that the paragraph describes such a method, also because the
name could have been matched by chance. After having mapped paragraphs onto methods,
we classify them onto three categories of candidate method descriptions:

• Syntactic descriptions: this heuristic aims at identifying paragraphs that describe method
syntactic descriptions. Such paragraphs contain (i) at least a given percentage s1 of the
method parameter names if the method has input parameters (i.e., paragraphs explain
the method inputs, or at least some of them), and (ii) the word “return” if the method is
not void. As explained in the previous work, we have set s1 to 50% [13] because ana-
lyzing the distribution of parameters referred to in the paragraphs traced onto methods
the median is equal to 50% for all the projects considered in that study [13].

• Method invocations: this heuristic aims at identifying paragraphs that describe a method
behavior in terms of invocations of other methods. Such paragraphs must contains (i)

232

8.5. CODES tool: mining sourCe cOde Descriptions from developErs diScussions

(a) Mined method Descriptions. (b) Description editing (relevant keywords highlighted
in different colors).

Figure 8.3: Browsing the mined descriptions.

words among “call”, “execute”, and “invoke”, and (ii) must mention at least one of the
methods invoked by the method being documented.

• Overriding/Overloading: this heuristic aims at identifying paragraphs that describe
how a method overrides/overloads another. After checking if, indeed, the method be-
ing re-documented does an overload or override, we check the presence of the words
“overload” or “override” in the paragraph.

Paragraphs that do not fall in any of the above three categories are discarded. Since
CODES can potentially associate a discussion to more than one class, to increase the accu-
racy of the approach, we apply a further step, in which we compute the textual similarity
between the candidate paragraphs identified in the previous step and the body of the meth-
ods they re-document. The similarity is computed by indexing both source code and textual
paragraphs using a Vector Space Model [80]. After having performed stop word removal,
Snowball stemming, and tf-idf term weighting, we compute the cosine similarity between
candidate descriptions and method corpora, and discard descriptions for which the cosine is
smaller than a threshold thT (calibrated to 0.4 in our previous work [13]). After such a filter-
ing, we use again textual similarity to prune out duplicate descriptions of the same method,
i.e., paragraphs describing the same method and having a cosine similarity greater than 0.8.
Finally, the obtained descriptions are stored in a local database implemented using SQLite.
Then, the user can browse such descriptions from a window in the IDE, modify them, and if
needed automatically inserting them in the code in form of Javadoc comments.

233

Mining Source Code Descriptions from Developer Communications

8.5.2 CODES in action

This section describes how CODES works, explaining its main features.

Starting to Search for Candidate Descriptions

The developer starts to use CODES by right-clicking on the Java project and selecting, in the
project’s context menu, the option “Mining Method Descriptions”. CODES opens a Window
that allows the developer to select the class(es) that she wants to re-document. When the
developer clicks on the “Confirm” button, CODES starts searching for method descriptions
of the selected class(es). Before starting the search for candidate descriptions, the developer
can click the button “Settings” to access in the search configuration window. This allows the
developer to choose between two possible sources of descriptions: (i) a local database con-
taining descriptions downloaded from SO during previous online searches, (ii) direct online
queries to SO.

Once the developer clicks on the “Confirm” button, CODES starts to search for descrip-
tions in SO and shows, with a progress bar, the status of the search process. Once the search
has been completed, the developer can start browsing/analyzing the candidate descriptions
found.

Browsing and Editing Candidate Descriptions

CODES generates a frame like the one shown in Figure 8.3(a) for each class for which candi-
date method descriptions were found in SO or in the local database. The frame contains, for
each method, a tab (point 1, Figure 8.3(a)) with expandable panels, reporting the descriptions
found for that method. In addition, each panel reports: (i) the description types (point 2, Fig-
ure 8.3(a)) i.e., whether it is a syntactic description, behavior description, or overload/override
description, (ii) a description preview (point 3, Figure 8.3(a)), the date when the description
was posted on SO (point 4, Figure 8.3(a)), and an icon (point 5, Figure 8.3(a)) colored green
or yellow depending on the relevance of the description itself. CODES allows a developer to
expand the panel and browse all descriptions for a given method (point 6, Figure 8.3(a)). By
clicking on any of these descriptions, CODES opens a new frame (point 1, Figure 8.3(b)),
which provides the possibility to edit the description text. In such a view, relevant keywords
are highlighted using different colors: (i) matched method name in light blue, (ii) matched
project name in gray, and (iii) matched class name in purple. From this view, the developers
can also export the description(s) in XML by clicking on the “Save as XML” button (point 4,
Figure 8.3(b)). For example, we used such option for the manual validation of the paragraphs
extracted, as described in Section 8.5.3.

234

8.5. CODES tool: mining sourCe cOde Descriptions from developErs diScussions

Figure 8.4: Generating a Javadoc comment from mined descriptions.

Adding Mined Descriptions as Javadoc Comments

CODES allows the developer to select (point 2, Figure 8.3(b)) one or more descriptions to
build a Javadoc comment for a specific method. Once the desired descriptions, the developer
can click on the “Add Comment” button (point 3, Figure 8.3(b)) to generate the Javadoc
comment, which will be automatically inserted in the code browseable from the Eclipse-JDT
IDE (point 1, Figure 8.4).

8.5.3 Performance Evaluation

In our previous study in Section 8.2([13]) we evaluated the approach implemented in CODES
by mining method descriptions of Lucene and Eclipse in the issue trackers of these two
projects. The proposed approach selected as good candidate method descriptions 3,111 para-
graphs for Eclipse and 3,707 for Lucene, covering 36% of the methods for Lucene and 7%
for Eclipse. As pointed out in our previous study, although such percentages appear to be
low, they are reasonable, because it is unlikely to find, in developers’ communication, a thor-
ough description of all possible methods. A manual validation on a sample of 250 candidate
descriptions for each projects indicated a precision of 79% for Eclipse and of 87% for Lucene.

To evaluate the CODES plugin when mining description from SO, we considered the

235

Mining Source Code Descriptions from Developer Communications

developers discussions in SO related to Lucene 2.9.0 (September 2009) and Hibernate 3.5.0
(August 2009), and applied a similar empirical evaluation that we performed in the previous
work. In particular, CODES found candidate method descriptions for 20% of the Lucene’s
methods and 28% for the Hibernate’s methods. A manual validation of 100 of the 9,343 de-
scriptions mined for Lucene and 100 of the 10,608 descriptions mined for Hibernate indicated
a precision of 84% for Lucene and 91% for Hibernate.

8.6 Related Work

Our approach relates to previous work both in its goals and execution.

Previous results that are closest to our work and used in our approach (see Section 8.2)
were published by Bacchelli et al. [203, 204, 208]. What relates this work to our approach is
the use of similar heuristics, as well as the main goal of connecting emails and source code.
What differentiates our work is the emphasize on methods (rather than classes) and the spe-
cific focus on paragraphs describing the methods. Another work concerned with extracting
technical information (such as, source code elements) embedded in emails and other unstruc-
tured information [209], uses spell checking tools, yet it is not concerned with identifying
relevant parts of the code.

Recently Bettenburg et al. [210] used an approach relying on clone detection to link
emails to source code. While the purpose of our work is different, their approach could
potentially be used—as we plan to do in future work—to increase the performances of our
approach.

Many techniques for Traceability Link Recovery (TLR) between software artifacts [211]
and many recommendation systems [212] aim at connecting specific source code artifacts
to unstructured text documents. TLR techniques based on text retrieval techniques [170,
201] are usually used to connect source code and text-based documentation. Two issues
differentiate all such approaches to traceability from our work: (i) none of them specifically
addresses methods and emails as linking artifacts; and (ii) none of them is concerned with the
establishing that the external artifacts (i.e., emails in our case) contain specifically description
of methods. Likewise, some recommendations systems, such as, Hipikat [213], are based
on the use of text retrieval techniques. As opposed to most traceability techniques, Hipikat
handles method level granularity and emails and it can recommend emails related to a method,
yet it does not extract the descriptive parts of the emails.

Our approach relies on heuristics that capture discourse rules that developers follow when
describing code in their communications. Previous work [214, 215] looked into how devel-
oper describe problems in bug reports. Rules of discourse in source comments were also

236

8.7. Summary

investigated. For example, Etzkorn et al. [216] found that 75% of sentence-style comments
were in the past tense, with 55% being some kind of operational description (e.g., “This
routine reads the data.”) and 44% having the style of a definition (e.g., “General matrix”).
Likewise, Tan et al. [217] analyzed comments written in natural language to extract implicit
program rules and used these rules to automatically detect inconsistencies between com-
ments and source code, indicating either bugs or bad comments. In the same realm, Zhong
et al. [218] proposed an approach, called Doc2Spec, that infers resource specifications from
API documentation in natural languages.

One of the potential uses of our approach is the re-documentation of source code by
generating method summaries using the paragraphs extracted from the emails and bug reports.
Existing work addressed the issues of using the code and comments in methods to generate
method summaries. Most recent approaches used language generation techniques [219] and
IR techniques [220] to generate method summaries. Some of these summaries are not unlike
some of the paragraphs our approach retrieves.

8.7 Summary

We verified in this work our hypothesis that developer communications, such as, mailing lists
and bug reports, contain textual information that can be extracted automatically and used
to describe methods from Java source code. We found that at least 22% of the methods in
Eclipse and 65% of the methods in Lucene are specifically referenced in emails and bug
reports. Only a part of these references are included in paragraphs that describe the methods
and can be automatically retrieved by our approach.

Our approach to mine method descriptions from developers communication—and specif-
ically from mailing lists and bug tracking systems, first traces emails/bug reports to classes,
and then, after extracting paragraphs, traces them to methods. After that, it relies on a set
of heuristics to extract different kinds of descriptions, namely: (i) descriptions explaining
methods in terms of their parameters and return values; (ii) descriptions explaining how a
method overloads/overrides another method; and (iii) descriptions of how a method works
by invoking other methods. Finally, a further pruning is performed by computing the textual
similarity between the paragraphs and the methods body.

Our empirical evaluation indicates that the proposed approach is able to identify descrip-
tions with a precision up to 79% for Eclipse and up to 87% for Lucene. The method coverage
of these description is low for Eclipse, ranging between 7% and 2%, and higher for Lucene,
ranging between 36% and 15%. The low method coverage is the result of two factors: (i)
only part of the methods are described properly in these communications, and (ii) our ap-

237

Mining Source Code Descriptions from Developer Communications

proach is rather conservative as we focused on achieving high precision, given the envision
usage scenario (i.e., a developer trying to understand quickly what a method does). Our in-
vestigation revealed the presence of linguistic patterns that—at least for the two analyzed
systems—characterize different kinds of method descriptions.

As described in section 8.5 we implemented our approach in CODES, an Eclipse plugin
to automatically extract Java method descriptions from discussions in SO. The tool is based
on a “social” approach defined in our previous work [13] and adapted to mine SO. CODES
searches SO for method descriptions of selected Java classes, and then recommends to the
developers, who can edit such descriptions, and then ask CODES to generate Javadoc com-
ments. The tool can be used by developers/owners of an open source project to re-document
their own code or, if needed, by integrators to re-document and understand poorly commented
open source code they want to reuse and integrate in their projects.

What is important to highlight is that the approach works well in both issue tracker and
SO discussions, confirming the reliability of the performance of the approach behind CODES.
From the other side, the methods coverage varying a lot between different projects, indeed,
it depends strictly from the overall amount of discussions and the attitude of developers to
report descriptions of methods in issue tracker (or in general in developers communications).
However, as expected the methods coverage is lower for big systems (for example Eclipse)
and higher for small projects (for example Lucene and Hibernate) but, in general the percent-
age value of the coverage is enough high for all the projects analyzed.

238

Chapter 9

Conclusions and Future Work

Contents
9.1 Summary of Contributions . 239

9.2 Future work . 242

9.3 Replication Packages and Tools . 243

9.3.1 Replication Packages . 243

9.3.2 Tools . 244

9.1 Summary of Contributions

This thesis investigates and explores the limits of the newcomer training process in OSS
projects and suggests possible concrete solutions to help the integration of newcomers in the
project evelopment team. There are various aspects that characterize a proper newcomer
training: (i) project environment, (ii) newcomers expertise and known technologies, (iii)
source code and documentation quality. Indeed, a proper project environment is highly desir-
able because helps the newcomer to approach easily with the project. Moreover, the quality
and understandability of source code and the related documentation can help the newcomer
to applying early changes in the code. The thesis focuses the attention in the analysis of the
project environment (especially, social environment), the source code and the software doc-
umentation with the purpose to discover important facts, relevant for the improvement of the
quality of the newcomer training process. Specifically, we (i) study how newcomers behave
during program comprehension activities and how they interact with others developers then,

239

Conclusions and Future Work

(ii) to develop tools for supporting them during development activities and in the integration
in the development team.

Thus, a first part of the thesis is aimed at understanding what kind of information can
be obtained by analyzing data from software repositories (e.g., versioning systems) to help
newcomers to collaborate with others developers and support the team work.

Chapter 2 is aimed at understanding what kind of information can be obtained by analyz-
ing data from versioning systems and development discussions to help newcomers to
collaborate with others developers and support the team work. For this reason we an-
alyze unstructured discussions between software developers, in form of mailing lists,
issue trackers or IRC chat to extract the social interactions between project developers.
We also analyze versioning systems to extract important facts about the code changes
applied by experienced developers. We try to identify the more reliable communica-
tion channels to communicate with more experienced developers that cover important
project roles (e.g., project coordinators). Specifically, we report a study that analyze
DSN and investigate how collaboration links vary and complement each other when
they are identified through data from the various kinds of communication channels.
Results of a study (reported in Section 2.3) over six open source projects indicate that
the overlap of communication links between the various sources is relatively low and
varies between projects. This means that, the identification of key project roles for
project newcomers —e.g., high degree—lead to different results when using different
sources.

Chapter 3 observes how developers contributing to open source projects spontaneously group
into “emerging” teams, reflected by messages exchanged over mailing lists and issue
trackers. Then, it investigates how emerging teams re-organize themselves when a
project evolves (e.g., by splitting or merging). Results of this study—conducted on the
evolution history of four open source projects—provide indications of what happens in
the project when teams reorganize. Specifically, we found that emerging team mergers
and splits working on more cohesive groups of files. Such indications serve to better
understand the evolution of a software project by project newcomer. More impor-
tant, the observation about how emerging teams change can serve to suggest software
re-modularization or re-factoring actions for newcomers/senior developers that are in-
terested to better restructure the software components.

Chapter 4 studies the evolution of the Apache Software Ecosystem, in terms of number of
developers, their interactions and the dependencies between projects and investigates
(i) how dependencies between projects and the developers interactions evolve over time

240

9.1. Summary of Contributions

when the ecosystem grows; (ii) how developers discuss the needs and risks of such
upgrades. The study results suggest the a proper communication between developers
belonging to different sub-projects of the ecosystem is one of the key elements that
avoid the presence of bugs and/or fault, as well as, incompatibility problem between
projects of the same ecosystem. Such information can be used for define an approach
that help developers/newcomers to avoid changes that could break the dependency with
third-party libraries.

A second part of the thesis investigates the information that can be extracted analyzing
source code and the interactions between software artifacts with the main purpose to help
newcomers in program comprehension task.

Chapter 5 is aimed at investigating (i) to what extent newcomers use different kinds of
documentation when identifying artifacts to be changed, and (ii) whether they follow
specific navigation patterns among different kinds of artifacts. Results indicate that, al-
though newcomers spent a conspicuous proportion of the available time by focusing on
source code, they browse back and forth between source code and either static (class)
or dynamic (sequence) diagrams. Less frequently, developers—especially more expe-
rienced ones—follow an “integrated” approach by using different kinds of artifacts.
Such information can be seen as a starting point to built recommenders in help new-
comer to choice appropriate patterns in navigate software documentation when apply
maintenance tasks.

Chapter 6 motivates and reports an empirical study aimed at build useful code summaries of
source code artifacts with the aim of facilitating newcomers comprehension. Results
show that overall there is a relatively high overlap between automatic and human-
generated labels, ranging between 50% and 90%. However, the highest overlap is
obtained by using the simplest heuristic, while the most sophisticated techniques, i.e.,
LSI and LDA, provide generally the worst accuracy. Thus, the ad-hoc heuristics ex-
perimented in this study represent a valid approach to build high quality summaries of
source code elements to help new developers in program comprehension.

The third part of the thesis, on the basis of insights obtained in the previous parts, presents
recommenders to support concretely project newcomers.

Chapter 7 presents an approach, named YODA (Young and newcOmer Developer Assis-
tant) aimed at identifying and recommending mentors in software projects by mining
data from mailing lists, issue trackers and versioning systems. The evaluation we per-
formed on seven software projects indicate that top committers are not always the most

241

Conclusions and Future Work

appropriate mentors, and show the potential usefulness of YODA as a recommendation
system to aid project managers in supporting newcomers joining a software project.
Finally, we discover that a properly training by project mentors impacts the trajectory
(career) of newcomers that are join the project. Well-trained newcomers have an higher
permanence in the project, almost twice that of developers that do not receive any initial
support.

Chapter 8 presents a recommender that mine messages exchanged among developers (or
contributors), in the form of issue trackers and emails, and extract useful descriptions,
that describe specific source code elements. We have evaluated the approach on bug
reports and mailing lists from two open source systems (Lucene and Eclipse). The
results indicate that mailing lists and bug reports contain relevant descriptions that the
proposed approach identifies with a precision higher than 79%. The extracted method
descriptions can help developers in understanding the code and could also be used as a
starting point for source code re-documentation.

In conclusion, in this thesis we investigated problems arising when newcomers join soft-
ware projects, and possible solutions to support them. After a deep analysis of software
repositories we found that it is possible to support the newcomer training with various rec-
ommenders. Among the many contributions of this thesis, we support the first newcomers
training stage with the suggestion of appropriate mentors; then, we help newcomers during
maintenance activities improving their program comprehension with the generation of high
quality source code summaries or identifying descriptions in natural language (mined from
developers’ discussion) describing source code elements. Clearly this thesis is only a starting
point for various possible solutions/recommenders to support newcomers as well as experi-
enced developers during comprehension and maintenance activities. Specifically, the next
section outline possible future direction of this work.

9.2 Future work

Based on the work carried out in this PhD thesis, we foresee several direction for future work:

• Concerning the analysis of developers collaborations, work-in-progress aims at further
validate the results by performing a survey asking to developers about the truthfulness
of the social links identified by analyzing different communication channels. This
information is relevant to validate the teams identified from emerging collaborations
extracted from mailing lists and issue trackers.

242

9.3. Replication Packages and Tools

• Concerning the analysis of the navigation patterns among software documents, we plan
to explicitly investigate possible relationships existing between the way developers use
the available documentation and the correctness of the tasks they perform. Also, we
will aim at building recommenders to help newcomer in the choice of appropriate pat-
terns to navigate software documentation during maintenance tasks.

• We plan to further improve the mentor recommender (YODA) by considering factors
able to better capture the technical skills of mentors.

• There is still a lot of space of improvement for the method documentation miner
(CODES), Specifically, we are interested to increase the precision while keeping the
method coverage as high as possible, as well as reducing the percentage of false pos-
itives. Possible improvement directions include a better classification of discussion
content, as well as the use of natural language parsers.

• Last, but not least, we plan to evaluate and assess the proposed recommenders in the
context of user studies, and to integrate them with other kind of recommenders that can
improve the newcomers training.

9.3 Replication Packages and Tools

The following sections report the replication packages and tools that available on-line to make
possible to other developers replicate our analysis.

9.3.1 Replication Packages

We make available the replication packages from the above studies presented in this thesis to
favor the studies replicability:

• Chapter 2: the replication package 1 provides: (i) the downloaded data from all sources
of all projects, (ii) the developers’ links extracted, and (iii) the R scripts and working
data sets used to produce the results reported in this study.

• Chapter 3: the replication package2 provides: (i) raw communication from the mailing
lists and issue trackers, (ii) communication graphs obtained from mailing lists and issue
trackers, (iii) parsed Git history logs, (iv) working data sets (i.e., spreadsheets) from
which the statistics used to address the RQs were computed.

1www.rcost.unisannio.it/mdipenta/devel-net.tgz
2www.rcost.unisannio.it/mdipenta/team-evol.tgz

243

Conclusions and Future Work

• Chapter 4: the replication package3 provides information to download all analyzed
projects, and includes data sets used to answer the study research questions. In par-
ticular, we provide: (i) raw data of the evolution during time of number of projects,
dependencies between them, size, and number of developers of the Apache, ecosys-
tem; (ii) the history of dependencies between project releases, and (iii) raw data of the
manual tagging performed on the developers’ discussions.

9.3.2 Tools

We make available the tools realized and presented in this thesis for supporting project new-
comers:

• Chapter 7: YODA is currently available for download 4 together with a video explain-
ing how the plugin works.

• Chapter 8: CODES is currently available for download 5 together with a video explain-
ing its features through a demonstration scenario.

3http://distat.unimol.it/reports/emse-apache/
4http://distat.unimol.it/tools/YODA/ or http://www.ing.unisannio.it/

spanichella/pages/projects.html
5www.ing.unisannio.it/spanichella/pages/tools/CODES

244

References

[1] G. Canfora, A. De Lucia, M. Di Penta, R. Oliveto, A. Panichella, and S. Panichella,
“Defect prediction as a multi-objective optimization problem,” tech. rep., University
of Salerno and University of Sannio, 2013.

[2] G. Bavota, G. Canfora, M. Di Penta, R. Oliveto, and S. Panichella, “How the apache
community upgrades dependencies: An evolutionary study,” 2013.

[3] A. Lucia, M. Penta, R. Oliveto, A. Panichella, and S. Panichella, “Labeling source
code with information retrieval methods: an empirical study,” Empirical Software En-
gineering, pp. 1–38, 2013.

[4] G. Capobianco, A. D. Lucia, R. Oliveto, A. Panichella, and S. Panichella, “Improving
ir-based traceability recovery via noun-based indexing of software artifacts,” Journal
of Software: Evolution and Process, vol. 25, no. 7, pp. 743–762, 2013.

[5] A. De Lucia, M. Di Penta, R. Oliveto, A. Panichella, and S. Panichella, “Applying
a smoothing filter to improve IR-based traceability recovery processes: An empiri-
cal investigation,” Information and Software Technology, vol. 55, no. 4, pp. 741–754,
2012.

[6] S. Panichella, G. Bavota, M. Di Penta, G. Canfora, and G. Antoniol, “How developers’
collaborations identified from different sources tell us about code changes.,” in ICSME
2014. IEEE International Conference on Software Maintenance and Evolution, 2014.

[7] S. Panichella, G. Canfora, M. Di Penta, and R. Oliveto, “How the evolution of emerg-
ing collaborations relates to code changes: an empirical study.,” in Proceedings of
the 36th International Conference on Program Comprehension, (Hyderabad, India),
pp. 177–188, 2014.

245

REFERENCES

[8] G. Bavota, G. Canfora, M. Di Penta, R. Oliveto, and S. Panichella, “An empirical in-
vestigation on documentation usage patterns in maintenance tasks.,” in Software Main-
tenance, 2013. ICSM 2013. IEEE International Conference on, pp. 210–219, 2013.

[9] G. Bavota, G. Canfora, M. Di Penta, R. Oliveto, and S. Panichella, “The evolution of
project inter-dependencies in a software ecosystem: the case of apache,” in Software
Maintenance, 2013. ICSM 2013. IEEE International Conference on, pp. 80–89, 2013.

[10] G. Canfora, A. De Lucia, M. Di Penta, R. Oliveto, A. Panichella, and S. Panichella,
“Multi-objective cross-project defect prediction,” in Proceedings of the 7th Interna-
tional Conference on Software Testing, Verification and Validation, IEEE CS Press,
2013.

[11] G. Canfora, M. Di Penta, R. Oliveto, and S. Panichella, “Who is going to mentor
newcomers in open source projects?,” in Proceedings of the 20th ACM SIGSOFT Sym-
posium on the Foundations of Software Engineering, (Cary, NC, USA), p. 44, 2012.

[12] A. De Lucia, M. Di Penta, R. Oliveto, A. Panichella, and S. Panichella, “Using ir meth-
ods for labeling source code artifacts: Is it worthwhile?,” in IEEE 20th International
Conference on Program Comprehension (ICPC’12), (Passau, Germany, June 11-13),
pp. 193–202, 2012.

[13] S. Panichella, J. Aponte, M. D. Penta, A. Marcus, and G. Canfora, “Mining source
code descriptions from developer communications,” in IEEE 20th International Con-
ference on Program Comprehension, ICPC 2012, pp. 63–72, 2012.

[14] A. De Lucia, M. Di Penta, R. Oliveto, A. Panichella, and S. Panichella, “Improving ir-
based traceability recovery using smoothing filters,” in Proceedings of the 19th IEEE
International Conference on Program Comprehension, pp. 21–30, 2011.

[15] G. Bavota, S. Panichella, N. Tsantalis, M. Di Penta, R. Oliveto, and G. Canfora, “Rec-
ommending refactorings based on team co-maintenance patterns,” in Proceedings of
the 29th international conference on Automated Software Engineering (ASE 2014),
2014.

[16] G. C. D. P. M. C. Vassallo, S. Panichella, “Codes: mining source code descriptions
from developers discussions.,” in Proceedings of the 36th International Conference on
Program Comprehension, (Hyderabad, India), pp. 106–109, 2014.

[17] G. Canfora, M. Di Penta, S. Giannantonio, R. Oliveto, and S. Panichella, “Yoda:
Young and newcomer developer assistant,” in Proceedings of the 35th International
Conference on Software Engineering, IEEE CS Press, 2013.

246

REFERENCES

[18] I. Steinmacher, I. Wiese, A. Chaves, and M. Gerosa, “Newcomers withdrawal in open
source software projects: Analysis of hadoop common project,” in Collaborative Sys-
tems (SBSC), 2012 Brazilian Symposium on, pp. 65–74, 2012.

[19] I. Steinmacher, I. Wiese, A. Chaves, and M. Gerosa, “Why do newcomers abandon
open source software projects?,” in Cooperative and Human Aspects of Software En-
gineering (CHASE), 2013 6th International Workshop on, pp. 25–32, 2013.

[20] I. Steinmacher, I. S. Wiese, T. Conte, M. A. Gerosa, and D. Redmiles, “The hard life
of open source software project newcomers,” in Proceedings of the 7th International
Workshop on Cooperative and Human Aspects of Software Engineering, CHASE 2014,
pp. 72–78, ACM, 2014.

[21] R. Kraut, M. Burke, and J. Riedl, “Dealing with newcomers,” 2010.

[22] M. Zhou and A. Mockus, “Does the initial environment impact the future of develop-
ers?,” in Proceedings of the 33rd International Conference on Software Engineering,
ICSE 2011, Waikiki, Honolulu, HI, USA, May 21-28, 2011, pp. 271–280, ACM, 2011.

[23] A. Hars and S. Ou, “Working for free? motivations for participating in open-source
projects,” Int. J. Electron. Commerce, vol. 6, no. 3, pp. 25–39, 2002.

[24] S. Krishnamurthy, “On the intrinsic and extrinsic motivation of free/libre/open source
(floss) developers,” Knowledge, Technology & Policy, vol. 18, no. 4, pp. 17–39, 2006.

[25] B. Dagenais, H. Ossher, R. K. E. Bellamy, M. P. Robillard, and J. de Vries, “Moving
into a new software project landscape,” in Proceedings of the 32nd ACM/IEEE Inter-
national Conference on Software Engineering - Volume 1, ICSE 2010, Cape Town,
South Africa, 1-8 May 2010, pp. 275–284, ACM, 2010.

[26] E. Capra and A. I. Wasserman, “A framework for evaluating managerial styles in open
source projects,” in Open Source Development, Communities and Quality, IFIP 20th
World Computer Congress, Working Group 2.3 on Open Source Software, OSS 2008,
September 7-10, 2008, Milano, Italy, pp. 1–14, Springer, 2008.

[27] C. Bird, A. Gourley, P. Devanbu, M. Gertz, and A. Swaminathan, “Mining email social
networks,” in Proceedings of the 2006 international workshop on Mining software
repositories, MSR ’06, (New York, NY, USA), pp. 137–143, ACM, 2006.

[28] E. Shihab, Z. M. Jiang, and A. Hassan, “Studying the use of developer irc meetings in
open source projects,” in Software Maintenance, 2009. ICSM 2009. IEEE International
Conference on, pp. 147–156, 2009.

247

REFERENCES

[29] K. Ehrlich and N. S. Shami, “Microblogging inside and outside the workplace,” in
Proceedings of the Fourth International Conference on Weblogs and Social Media,
ICWSM 2010, The AAAI Press, 2010.

[30] L. Singer, F. Figueira Filho, and M.-A. Storey, “Software engineering at the speed of
light: How developers stay current using twitter,” in Proceedings of the 36th Interna-
tional Conference on Software Engineering, pp. 211–221, ACM, 2014.

[31] A. Guzzi, A. Bacchelli, M. Lanza, M. Pinzger, and A. van Deursen, “Communication
in open source software development mailing lists,” in Proceedings of the 10th Work-
ing Conference on Mining Software Repositories, MSR ’13, San Francisco, CA, USA,
May 18-19, 2013, pp. 277–286, IEEE / ACM, 2013.

[32] I. Steinmacher, I. Wiese, and M. Gerosa, “Recommending mentors to software project
newcomers,” in Recommendation Systems for Software Engineering (RSSE), 2012
Third International Workshop on, pp. 63–67.

[33] F. Brooks, The Mythical Man-Month 20th anniversary edition. Boston, MA, USA:
Addison-Wesley, 1995.

[34] J. Aranda and G. Venolia, “The secret life of bugs: Going past the errors and omissions
in software repositories,” in 31st International Conference on Software Engineering,
ICSE 2009, May 16-24, 2009, Vancouver, Canada, Proceedings, pp. 298–308, 2009.

[35] C. Bird, D. Pattison, R. D’Souza, V. Filkov, and P. Devanbu, “Latent social structure in
open source projects,” in Proceedings of the 16th ACM SIGSOFT International Sym-
posium on Foundations of software engineering, SIGSOFT ’08/FSE-16, (New York,
NY, USA), pp. 24–35, ACM, 2008.

[36] Q. Hong, S. Kim, S. C. Cheung, and C. Bird, “Understanding a developer social net-
work and its evolution,” in IEEE 27th International Conference on Software Main-
tenance, ICSM 2011, Williamsburg, VA, USA, September 25-30, 2011, pp. 323–332,
IEEE, 2011.

[37] N. Bettenburg and A. E. Hassan, “Studying the impact of social structures on soft-
ware quality,” in International Conference on Program Comprehension, ICPC 2010,
pp. 124–133, 2010.

[38] A. Kumar and A. Gupta, “Evolution of developer social network and its impact on
bug fixing process,” in Proceedings of the 6th India Software Engineering Conference,
pp. 63–72, ACM, 2013.

248

REFERENCES

[39] A. Meneely and L. Williams, “Socio-technical developer networks: Should we trust
our measurements?,” in Proceedings of the 33rd International Conference on Software
Engineering, (New York, NY, USA), pp. 281–290, ACM, 2011.

[40] M. Pohl and S. Diehl, “What dynamic network metrics can tell us about developer
roles,” in Proceedings of the 2008 international workshop on Cooperative and hu-
man aspects of software engineering, CHASE ’08, (New York, NY, USA), pp. 81–84,
ACM, 2008.

[41] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent Dirichlet Allocation,” J. Mach. Learn.
Res., vol. 3, pp. 993–1022, March 2003.

[42] M. Nikulin, “Hellinger distance,” Encyclopedia of Mathematics, 2001.

[43] A. Panichella, B. Dit, R. Oliveto, M. Di Penta, D. Poshyvanyk, and A. De Lucia, “How
to effectively use topic models for software engineering tasks? an approach based on
genetic algorithms,” in 35th IEEE/ACM International Conference on Software Engi-
neering, ICSE 2013, (San Francisco, CA, USA, May 18-26), pp. 522–531, 2013.

[44] J. P. Scott, Social Network Analysis: A Handbook (2nd edition). Sage Publications
Ltd, 2000.

[45] G. Canfora, L. Cerulo, M. Cimitile, and M. Di Penta, “Social interactions around
cross-system bug fixings: the case of FreeBSD and OpenBSD,” in Proceedings of the
8th International Working Conference on Mining Software Repositories, MSR 2011,
Waikiki, Honolulu, HI, USA, May 21-28, 2011, pp. 143–152, 2011.

[46] M.-A. S. Leif Singer, Fernando Figueira Filho, “Software engineering at the speed of
light: How developers stay current using Twitter,” in 36sth International Conference
on Software Engineering, ICSE 2014, May 31- June 07, 2009, Hyderabad, India, 2014.

[47] A. Capiluppi and M. Michlmayr, “From the cathedral to the bazaar: An empirical study
of the lifecycle of volunteer community projects,” in Open Source Development, Adop-
tion and Innovation, pp. 31–44, International Federation for Information Processing,
Springer, 2007.

[48] L. Lopez, J. M. Gonzalez-Barahona, and G. Robles, “Applying social network analysis
to the information in CVS repositories,” in Proceedings of the International Workshop
on Mining Software Repositories, ACM Press, 2004.

249

REFERENCES

[49] A. Meneely, M. Corcoran, and L. Williams, “Improving developer activity metrics
with issue tracking annotations,” in Proceedings of the 2010 ICSE Workshop on
Emerging Trends in Software Metrics, WETSoM ’10, pp. 75–80, ACM, 2010.

[50] P. V. Singh, “The small-world effect: The influence of macro-level properties of devel-
oper collaboration networks on open-source project success,” ACM Trans. Softw. Eng.
Methodol., vol. 20, no. 2, 2010.

[51] D. Surian, D. Lo, and E.-P. Lim, “Mining collaboration patterns from a large devel-
oper network,” in Reverse Engineering (WCRE), 2010 17th Working Conference on,
pp. 269–273, 2010.

[52] J. Xu, Y. Gao, S. Christley, and G. Madey, “A topological analysis of the open source
software development community,” in Proceedings of the 38th Annual Hawaii Inter-
national Conference on System Sciences, pp. 198.1–, IEEE Computer Society, 2005.

[53] L. Yu and S. Ramaswamy, “Mining CVS repositories to understand open-source
project developer roles,” in Mining Software Repositories, 2007. ICSE Workshops MSR
’07. Fourth International Workshop on, pp. 8–8, 2007.

[54] A. Bacchelli, T. Dal Sasso, M. D’Ambros, and M. Lanza, “Content classification of de-
velopment emails,” in Proceedings of the 2012 International Conference on Software
Engineering, pp. 375–385, IEEE Press, 2012.

[55] E. Shihab, N. Bettenburg, B. Adams, and A. E. Hassan, “On the central role of mailing
lists in open source projects: An exploratory study,” in Proceedings of the 2009 Inter-
national Conference on New Frontiers in Artificial Intelligence, (Berlin, Heidelberg),
pp. 91–103, Springer-Verlag, 2010.

[56] P. Wagstrom, J. Herbsleb, and K. Carley, “A social network approach to free/open
source software simulation,” in Proceedings of the 1st International Conference on
Open Source Systems, (Genova, Italy), 2005.

[57] E. Shihab, Z. M. Jiang, and A. E. Hassan, “On the use of internet relay chat (IRC)
meetings by developers of the GNOME GTK+ project,” in Proceedings of the 2009 6th
IEEE International Working Conference on Mining Software Repositories, pp. 107–
110, IEEE Computer Society, 2009.

[58] M. S. Elliott and W. Scacchi, “Free software developers as an occupational commu-
nity: Resolving conflicts and fostering collaboration,” in Proceedings of the 2003 In-
ternational ACM SIGGROUP Conference on Supporting Group Work, GROUP ’03,
pp. 21–30, ACM, 2003.

250

REFERENCES

[59] T. D. LaToza, G. Venolia, and R. DeLine, “Maintaining mental models: A study of de-
veloper work habits,” in Proceedings of the 28th International Conference on Software
Engineering, ICSE ’06, pp. 492–501, ACM, 2006.

[60] M. L. Bernardi, G. Canfora, G. A. Di Lucca, M. Di Penta, and D. Distante, “Do
developers introduce bugs when they do not communicate? the case of eclipse and
mozilla,” in 2011 15th European Conference on Software Maintenance and Reengi-
neering, pp. 139–148, IEEE Computer Society, 2012.

[61] K. Crowston and J. Howison, “The social structure of free and open source software
development,” First Monday, vol. 10, no. 2, 2005.

[62] C. Haythornthwaite, “The strength and the impact of new media,” in Proceedings of
the 34th Annual Hawaii International Conference on System Sciences (HICSS-34)-
Volume 1 - Volume 1, pp. 1019–, IEEE Computer Society, 2001.

[63] D. Zhao and M. B. Rosson, “How and why people twitter: The role that micro-
blogging plays in informal communication at work,” in Proceedings of the ACM 2009
International Conference on Supporting Group Work, pp. 243–252, ACM, 2009.

[64] J. Zhang, Y. Qu, J. Cody, and Y. Wu, “A case study of micro-blogging in the enterprise:
Use, value, and related issues,” in Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, pp. 123–132, ACM, 2010.

[65] K. Dullemond, B. v. Gameren, M.-A. Storey, and A. v. Deursen, “Fixing the ”out of
sight out of mind” problem: One year of mood-based microblogging in a distributed
software team,” in Proceedings of the 10th Working Conference on Mining Software
Repositories, MSR ’13, pp. 267–276, IEEE Press, 2013.

[66] A. Begel, Y. P. Khoo, and T. Zimmermann, “Codebook: discovering and exploiting
relationships in software repositories,” in Proceedings of the 32nd ACM/IEEE Inter-
national Conference on Software Engineering, pp. 125–134, ACM, 2010.

[67] E. S. Raymond, The Cathedral and the Bazaar. Sebastopol, CA, USA: O’Reilly &
Associates, Inc., 1st ed., 1999.

[68] C. Bird, D. S. Pattison, R. M. D’Souza, V. Filkov, and P. T. Devanbu, “Latent social
structure in open source projects,” in Proceedings of the 16th ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineering, 2008, Atlanta, Georgia,
USA, November 9-14, 2008, pp. 24–35, ACM, 2008.

251

REFERENCES

[69] A. Guzzi, A. Bacchelli, M. Lanza, M. Pinzger, and A. van Deursen, “Communication
in open source software development mailing lists,” in Proceedings of the 10th Work-
ing Conference on Mining Software Repositories, MSR ’13, San Francisco, CA, USA,
May 18-19, 2013, pp. 277–286, IEEE / ACM, 2013.

[70] I. T. Bowman, R. C. Holt, and N. V. Brewster, “Linux as a case study: Its extracted
software architecture,” in Proceedings of the 1999 International Conference on Soft-
ware Engineering, ICSE’ 99, Los Angeles, CA, USA, May 16-22, 1999, pp. 555–563,
ACM, 1999.

[71] G. Bavota, B. Dit, R. Oliveto, M. Di Penta, D. Poshyvanyk, and A. De Lucia, “An
empirical study on the developers’ perception of software coupling,” in 35th Interna-
tional Conference on Software Engineering, ICSE ’13, San Francisco, CA, USA, May
18-26, 2013, pp. 692–701, IEEE / ACM, 2013.

[72] C. Bird, A. Gourley, P. T. Devanbu, M. Gertz, and A. Swaminathan, “Mining email so-
cial networks,” in Proceedings of the 2006 International Workshop on Mining Software
Repositories, MSR 2006, Shanghai, China, May 22-23, 2006, pp. 137–143, 2006.

[73] J. Bezdek, Pattern recognition with fuzzy objective function algorithms. New York:
Plenum, 1981.

[74] R Core Team, R: A Language and Environment for Statistical Computing. 2012. ISBN
3-900051-07-0.

[75] L. Kaufman and P. J. Rousseeuw, Finding Groups in Data: An Introduction to Cluster
Analysis. Wiley-Interscience, 2005.

[76] A. Gordon, Classification (2nd edition). CRC Press, 1988.

[77] S. Mancoridis, B. S. Mitchell, C. Rorres, Y.-F. Chen, and E. R. Gansner, “Using auto-
matic clustering to produce high-level system organizations of source code,” in IWPC,
pp. 45–, IEEE Computer Society.

[78] B. S. Mitchell and S. Mancoridis, “On the automatic modularization of software sys-
tems using the bunch tool,” IEEE Transactions on Software Engineering, vol. 32, no. 3,
pp. 193–208, 2006.

[79] D. Poshyvanyk, A. Marcus, R. Ferenc, and T. Gyimóthy, “Using information re-
trieval based coupling measures for impact analysis,” Empirical Software Engineering
(EMSE), vol. 14, no. 1, pp. 5–32, 2009.

252

REFERENCES

[80] R. Baeza-Yates and B. Ribeiro-Neto, Modern Information Retrieval. Addison-Wesley,
1999.

[81] W. J. Conover, Practical Nonparametric Statistics. Wiley, 3rd edition ed., 1998.

[82] R. J. Grissom and J. J. Kim, Effect sizes for research: A broad practical approach.
Lawrence Earlbaum Associates, 2nd edition ed., 2005.

[83] J. Cohen, Statistical power analysis for the behavioral sciences. Lawrence Earlbaum
Associates, 2nd edition ed., 1988.

[84] A. Begel, Y. P. Khoo, and T. Zimmermann, “Codebook: discovering and exploiting
relationships in software repositories,” in Proceedings of the 32nd ACM/IEEE Inter-
national Conference on Software Engineering - Volume 1, pp. 125–134, ACM.

[85] D. Surian, D. Lo, and E.-P. Lim, “Mining collaboration patterns from a large developer
network,” Reverse Engineering, Working Conference on, pp. 269–273, 2010.

[86] J. Bosh, “From software product lines to software ecosystems,” in Proceedings of the
13th International Conference on Software Product Lines (SPLC), pp. 111–119, 2009.

[87] S. Jansen, A. Finkelstein, and S. Brinkkemper, “A sense of community: A re-
search agenda for software ecosystems,” in 31st International Conference on Software
Ecosystems, New and Emerging Research Track, pp. 187–190, 2005.

[88] R. Robbes, M. Lungu, and D. Röthlisberger, “How do developers react to API depre-
cation?: the case of a smalltalk ecosystem,” in Proceedings of the ACM SIGSOFT 20th
International Symposium on the Foundations of Software Engineering, (New York,
NY, USA), pp. 56:1–56:11, ACM, 2012.

[89] M. Di Penta, D. M. Germán, Y.-G. Guéhéneuc, and G. Antoniol, “An exploratory
study of the evolution of software licensing,” in Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering - Volume 1, ICSE 2010, Cape Town,
South Africa, 1-8 May 2010, pp. 145–154, ACM, 2010.

[90] J. Businge, A. Serebrenik, and M. van den Brand, “Survival of Eclipse third-party
plug-ins,” in 28th IEEE International Conference on Software Maintenance (ICSM
2012), Trento, Italy, Sep 23-28, 2012, pp. 368–377, IEEE Computer Society, 2012.

[91] D. German, B. Adams, and A. E. Hassan, “Programming Language Ecosystems: the
Evolution of R,” in Proceedings of the 17th European Conference on Software Main-
tenance and Reengineering (CSMR), (Genova, Italy), pp. 243–252, 2013.

253

REFERENCES

[92] G. Bavota, A. Ciemniewska, I. Chulani, A. De Nigro, M. Di Penta, D. Galletti,
R. Galoppini, T. F. Gordon, P. Kedziora, I. Lener, F. Torelli, R. Pratola, J. Pukacki,
Y. Rebahi, and S. G. Villalonga, “The market for open source: An intelligent vir-
tual open source marketplace,” in Joint 18th European Conference on Software
Maintenance and Reengineering / 21st Working Conference on Reverse Engineering,
CSMR18/WCRE21, February 3-6, 2014, Antwerp, Belgium, Proceedings, p. To appear,
2014.

[93] V. Levenshtein, “Binary codes capable of correcting deletions, insertions, and rever-
sals,” Soviet Physics Doklady, vol. 10, pp. 707–716, 1966.

[94] M. Goeminne, M. Claes, and T. Mens, “A historical dataset for the GNOME ecosys-
tem,” in Proceedings of the 10th Working Conference on Mining Software Repositories,
pp. 225–228, IEEE Press, 2013.

[95] S. Gala-Perez, G. Robles, J. M. Gonzalez-Barahona, and I. Herraiz, “Intensive metrics
for the study of the Evolution of Open Source Projects,” in 10th IEEE Working Con-
ference on Mining Software Repositories, (San Francisco, California, USA), 2013.

[96] M. W. Godfrey and Q. Tu, “Evolution in open source software: A case study,” in
Proceedings of the International Conference on Software Maintenance (ICSM’00),
(Washington, DC, USA), pp. 131–140, IEEE Computer Society, 2000.

[97] J. M. Gonzalez-Barahona, G. Robles, M. Michlmayr, J. J. Amor, and D. M. German,
“Macro-level software evolution: a case study of a large software compilation,” Em-
pirical Softw. Engg., vol. 14, no. 3, pp. 262–285, 2009.

[98] D. M. German, J. M. Gonzalez-Barahona, and G. Robles, “A model to understand
the building and running inter-dependencies of software,” in Proceedings of the 14th
Working Conference on Reverse Engineering, WCRE ’07, (Washington, DC, USA),
pp. 140–149, IEEE Computer Society, 2007.

[99] M. Lungu, R. Robbes, and M. Lanza, “Recovering inter-project dependencies in soft-
ware ecosystems,” in In Proceedings of ASE 2010, pp. 309–312, ACM Society Press,
2010.

[100] M. Wermelinger and Y. Yu, “Analyzing the evolution of Eclipse plugins,” in Proceed-
ings of the 2008 international working conference on Mining software repositories,
(New York, NY, USA), pp. 133–136, ACM, 2008.

254

REFERENCES

[101] M. Wermelinger, Y. Yu, A. Lozano, and A. Capiluppi, “Assessing architectural evolu-
tion: a case study.,” Empirical Software Engineering, vol. 16, no. 5, pp. 623–666.

[102] T. Mens, J. Fernández-Ramil, and S. Degrandsart, “The evolution of Eclipse,” in 24th
IEEE International Conference on Software Maintenance (ICSM 2008), September 28
- October 4, 2008, Beijing, China, pp. 386–395, IEEE, 2008.

[103] Y. H. Kidane and P. A. Gloor, “Correlating temporal communication patterns of the
Eclipse open source community with performance and creativity,” Comput. Math. Or-
gan. Theory, vol. 13, pp. 17–27, Mar. 2007.

[104] D. M. Germán, “The GNOME project: a case study of open source, global software
development,” Software Process: Improvement and Practice, vol. 8, no. 4, pp. 201–
215, 2003.

[105] M. Goeminne and T. Mens, “Analyzing ecosystems for open source software developer
communities,” in Software Ecosystems: Analyzing and Managing Business Networks
in the Software Industry (M. A. C. Slinger Jansen, Sjaak Brinkkemper, ed.), pp. 301–
329, Edward Elgar Publishing, Incorporated, 2013.

[106] S. Koch and G. Schneider, “Effort, cooperation and coordination in an open source
software project: GNOME,” Information Systems Journal, vol. 12, no. 1, pp. 27–42,
2002.

[107] B. Vasilescu, A. Serebrenik, M. Goeminne, and T. Mens, “On the variation and special-
isation of workloadâĂŤ A case study of the Gnome ecosystem community,” Empirical
Software Engineering, pp. 1–54, 2013.

[108] C. Jergensen, A. Sarma, and P. Wagstrom, “The onion patch: migration in open source
ecosystems,” in Proceedings of the 19th ACM SIGSOFT symposium and the 13th Eu-
ropean conference on Foundations of software engineering, (New York, NY, USA),
pp. 70–80, ACM, 2011.

[109] T. Kilamo, I. Hammouda, T. Mikkonen, and T. Aaltonen, “From proprietary to open
sourceâĂŤgrowing an open source ecosystem,” Journal of Systems and Software,
vol. 85, no. 7, pp. 1467 – 1478, 2012.

[110] W. Scacchi and T. A. Alspaugh, “Understanding the role of licenses and evolution
in open architecture software ecosystems,” Journal of Systems and Software, vol. 85,
pp. 1479–1494, July 2012.

255

REFERENCES

[111] J. Ossher, S. K. Bajracharya, and C. V. Lopes, “Automated dependency resolution for
open source software,” in Proceedings of the 7th International Working Conference on
Mining Software Repositories, MSR 2010 (Co-located with ICSE), Cape Town, South
Africa, May 2-3, 2010, Proceedings, pp. 130–140, IEEE, 2010.

[112] J. Krinke, N. Gold, Y. Jia, and D. Binkley, “Cloning and copying between GNOME
projects,” in 2010 7th IEEE Working Conference on Mining Software Repositories,
MSR 2010 (J. Whitehead and T. Zimmermann, eds.), pp. 98–101, IEEE.

[113] L. Yu, S. Ramaswamy, and J. Bush, “Software evolvability: An ecosystem Point of
View,” IEEE International Workshop on Software Evolvability, vol. 0, pp. 75–80,
2007.

[114] M. Annosi, M. Di Penta, and G. Tortora, “Managing and assessing the risk of compo-
nent upgrades,” in Product Line Approaches in Software Engineering (PLEASE), 2012
3rd International Workshop on, pp. 9–12, 2012.

[115] A. von Mayrhauser and A. M. Vans, “Comprehension processes during large scale
maintenance,” in Proceedings of the 16th international conference on Software engi-
neering, ICSE ’94, (Los Alamitos, CA, USA), pp. 39–48, IEEE Computer Society
Press, 1994.

[116] E. Arisholm, L. C. Briand, S. E. Hove, and Y. Labiche, “The impact of UML docu-
mentation on software maintenance: An experimental evaluation,” IEEE Transactions
on Software Engineering, vol. 32, no. 6, pp. 365–381, 2006.

[117] W. J. Dzidek, E. Arisholm, and L. C. Briand, “A realistic empirical evaluation of the
costs and benefits of UML in software maintenance,” IEEE Transaction on Software
Engineering, vol. 34, no. 3, pp. 407–432, 2008.

[118] E. Tryggeseth, “Report from an experiment: Impact of documentation on mainte-
nance,” Empirical Software Engineering, vol. 2, no. 2, pp. 201–207, 1997.

[119] J. A. Cruz-Lemus, M. Genero, M. E. Manso, and M. Piattini, “Evaluating the effect of
composite states on the understandability of UML statechart diagrams,” in proceedings
of the International Conference on Model Driven Engineering Languages and Systems
(MODELS 2005), Springer, 2005.

[120] M. C. Otero and J. J. Dolado, “An initial experimental assessment of the dynamic
modelling in UML,” Empirical Software Engineering, vol. 7, no. 1, pp. 27–47, 2002.

256

REFERENCES

[121] S. Tilley and S. Huang, “A qualitative assessment of the efficacy of UML diagrams
as a form of graphical documentation in aiding program understanding,” in SIGDOC
’03: Proceedings of the 21st annual international conference on Documentation, (New
York, NY, USA), pp. 184–191, ACM Press, 2003.

[122] B. de Alwis and G. C. Murphy, “Using visual momentum to explain disorientation
in the Eclipse IDE,” in Proceedings of the IEEE Symposium on Visual Languages
and Human-Centric Computing, (Brighton, UK), pp. 51–54, IEEE Computer Society,
2006.

[123] M. Kersten and G. C. Murphy, “Using task context to improve programmer productiv-
ity,” in Proceedings of the 14th ACM SIGSOFT International Symposium on Founda-
tions of Software Engineering, (Oregon, USA), pp. 1–11, ACM, 2006.

[124] A. N. Oppenheim, Questionnaire Design, Interviewing and Attitude Measurement.
London: Pinter, 1992.

[125] F. Ricca, M. Di Penta, M. Torchiano, P. Tonella, and M. Ceccato, “How developers’
experience and ability influence web application comprehension tasks supported by
uml stereotypes: A series of four experiments,” IEEE Trans. Software Eng., vol. 36,
no. 1, pp. 96–118, 2010.

[126] D. Budgen, A. J. Burn, O. P. Brereton, B. A. Kitchenham, and R. Pretorius, “Empir-
ical evidence about the UML: a systematic literature review,” Software: Practise and
Experience, vol. 41, no. 4, pp. 363–392, 2011.

[127] M. Torchiano, “Empirical assessment of UML static object diagrams,” in International
Workshop on Program Comprehension (IWPC 2004), pp. 226–229, IEEE Computer
Society, 2004.

[128] L. C. Briand, Y. Labiche, M. Di Penta, and H. D. Yan-Bondoc, “An experimental in-
vestigation of formality in UML-based development,” IEEE Transactions on Software
Engineering, vol. 31, no. 10, pp. 833–849, 2005.

[129] S. Abrahão, C. Gravino, E. Insfrán, G. Scanniello, and G. Tortora, “Assessing the ef-
fectiveness of sequence diagrams in the comprehension of functional requirements:
Results from a family of five experiments,” IEEE Transaction on Software Engineer-
ing, vol. 39, no. 3, pp. 327–342, 2013.

[130] M. P. Robillard, W. Coelho, and G. C. Murphy, “How effective developers investi-
gate source code: An exploratory study,” IEEE Transactions on Software Engineering,
vol. 30, no. 12, pp. 889–903, 2004.

257

REFERENCES

[131] J. Sillito, G. C. Murphy, and K. D. Volder, “Asking and answering questions during
a programming change task,” IEEE Transactions on Software Engineering, vol. 34,
no. 4, pp. 434–451, 2008.

[132] J. Singer, T. C. Lethbridge, N. G. Vinson, and N. Anquetil, “An examination of soft-
ware engineering work practices,” in Proceedings of the 1997 conference of the Centre
for Advanced Studies on Collaborative Research, (Toronto, Ontario, Canada), p. 21,
IBM, 1997.

[133] R. DeLine, A. Khella, M. Czerwinski, and G. G. Robertson, “Towards understanding
programs through wear-based filtering,” in Proceedings of the ACM 2005 Symposium
on Software Visualization, (St. Louis, Missouri, USA), pp. 183–192, ACM, 2005.

[134] M.-A. D. Storey, K. Wong, and H. A. Müller, “How do program understanding tools
affect how programmers understand programs?,” Science of Computer Programming,
vol. 36, no. 2-3, pp. 183–207, 2000.

[135] T. Fritz, G. C. Murphy, and E. Hill, “Does a programmer’s activity indicate knowledge
of code?,” in Proceedings of the 6th joint meeting of the European Software Engineer-
ing Conference and the ACM SIGSOFT International Symposium on Foundations of
Software Engineering, (Dubrovnik, Croatia), pp. 341–350, ACM, 2007.

[136] G. C. Murphy, M. Kersten, and L. Findlater, “How are Java software developers using
the Eclipse IDE?,” IEEE Software, vol. 23, no. 4, pp. 76–83, 2006.

[137] Y.-G. Guéhéneuc, “TAUPE: towards understanding program comprehension,” in Pro-
ceedings of the 2006 conference of the Centre for Advanced Studies on Collaborative
Research (CASCON 2006), October 16-19, 2006, Toronto, Ontario, Canada, pp. 1–13,
IBM, 2006.

[138] S. Yusuf, H. H. Kagdi, and J. I. Maletic, “Assessing the comprehension of UML class
diagrams via eye tracking,” in Proceedings of the 15th International Conference on
Program Comprehension, (Banff, Alberta, Canada), pp. 113–122, IEEE Computer So-
ciety, 2007.

[139] B. Sharif and J. I. Maletic, “An eye tracking study on the effects of layout in under-
standing the role of design patterns,” in Proceedings of the 26th IEEE International
Conference on Software Maintenance, (Timisoara, Romania), pp. 1–10, IEEE Com-
puter Society, 2010.

258

REFERENCES

[140] S. Jeanmart, Y.-G. Guéhéneuc, H. A. Sahraoui, and N. Habra, “Impact of the visitor
pattern on program comprehension and maintenance,” in Proceedings of the 3rd In-
ternational Symposium on Empirical Software Engineering and Measurement, (Lake
Buena Vista, Florida, USA), pp. 69–78, 2009.

[141] V. Lavrenko, A Generative Theory of Relevance, vol. 26. Springer, 2009.

[142] V. Rajlich and N. Wilde, “The role of concepts in program comprehension,” in Pro-
ceedings of the 10th International Workshop on Program Comprehension, (Paris,
France), pp. 271–280, IEEE Computer Society, 2002.

[143] M.-A. D. Storey, “Theories, tools and research methods in program comprehension:
past, present and future,” Software Quality Journal, vol. 14, no. 3, pp. 187–208, 2006.

[144] T. D. LaToza, G. Venolia, and R. DeLine, “Maintaining mental models: a study of de-
veloper work habits,” in Proceedings of the 28th International Conference on Software
Engineering, (Shanghai, China), pp. 492–501, ACM Press, 2006.

[145] A. J. Ko, B. A. Myers, M. J. Coblenz, and H. H. Aung, “An exploratory study of how
developers seek, relate, and collect relevant information during software maintenance
tasks,” IEEE Transactions on Software Engineering, vol. 32, no. 12, pp. 971–987,
2006.

[146] S. Haiduc, J. Aponte, L. Moreno, and A. Marcus, “On the use of automated text sum-
marization techniques for summarizing source code,” in Proceedings of the 17th Work-
ing Conference on Reverse Engineering, (Beverly, MA, USA), pp. 35–44, IEEE Com-
puter Society, 2010.

[147] A. Kuhn, S. Ducasse, and T. Gîrba, “Semantic clustering: Identifying topics in source
code,” Information & Software Technology, vol. 49, no. 3, pp. 230–243, 2007.

[148] S. W. Thomas, B. Adams, A. E. Hassan, and D. Blostein, “Validating the use of topic
models for software evolution,” in Tenth IEEE International Working Conference on
Source Code Analysis and Manipulation, SCAM 2010, Timisoara, Romania, 12-13
September 2010, pp. 55–64, IEEE Computer Society, 2010.

[149] M. Gethers, T. Savage, M. Di Penta, R. Oliveto, D. Poshyvanyk, and A. De Lucia,
“Codetopics: which topic am i coding now?,” in Proceedings of the 33rd International
Conference on Software Engineering, ICSE 2011, Waikiki, Honolulu , HI, USA, May
21-28, 2011, pp. 1034–1036, ACM, 2011.

259

REFERENCES

[150] A. Hindle, C. Bird, T. Zimmermann, and N. Nagappan, “Relating requirements to
implementation via topic analysis: Do topics extracted from requirements make sense
to managers and developers?,” in Proceedings of the 28th International Conference on
Software Maintenance, (Riva del Garda, Italy), IEEE CS Press, 2012.

[151] D. Lawrie, H. Feild, and D. Binkley, “An empirical study of rules for well-formed
identifiers,” Journal of Software Maintenance, vol. 19, no. 4, pp. 205–229, 2007.

[152] A. Takang, P. Grubb, and R. Macredie, “The effects of comments and identifier names
on program comprehensibility: an experiential study,” Journal of Program Languages,
vol. 4, no. 3, pp. 143–167, 1996.

[153] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and R. Harshman, “In-
dexing by latent semantic analysis,” Journal of the American Society for Information
Science, vol. 41, no. 6, pp. 391–407, 1990.

[154] J. K. Cullum and R. A. Willoughby, Lanczos Algorithms for Large Symmetric Eigen-
value Computations, vol. 1, ch. Real rectangular matrices. Boston: Birkhauser, 1998.

[155] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,” The Journal of
Machine Learning Research, vol. 3, pp. 993–1022, 2003.

[156] M. F. Porter, “An algorithm for suffix stripping,” Program, vol. 14, no. 3, pp. 130–137,
1980.

[157] S. Haiduc, J. Aponte, and A. Marcus, “Supporting program comprehension with
source code summarization,” in Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering, (Cape Town, South Africa), pp. 223–226, ACM
Press, 2010.

[158] S. Holm, “A simple sequentially rejective Bonferroni test procedure,” Scandinavian
Journal on Statistics, vol. 6, pp. 65–70, 1979.

[159] R. D. Baker, “Modern permutation test software,” in Randomization Tests (E. Edging-
ton, ed.), Marcel Decker, 1995.

[160] C. E. Shannon, “A mathematical theory of communication,” Bell System Technical
Journal, vol. 27, pp. 379–423, 625–56, 1948.

[161] A. Marcus, D. Poshyvanyk, and R. Ferenc, “Using the conceptual cohesion of classes
for fault prediction in object-oriented systems,” IEEE Transaction on Software Engi-
neering, vol. 34, no. 2, pp. 287–300, 2008.

260

REFERENCES

[162] L. Guerrouj, M. D. Penta, G. Antoniol, and Y. G. Guéhéneuc, “Tidier: An identifier
splitting approach using speech recognition techniques,” Journal of Software Evolution
and Processes, p. 31, 2011.

[163] G. Canfora and L. Cerulo, “Impact analysis by mining software and change request
repositories,” in Proceedings of 11th IEEE International Symposium on Software Met-
rics, (Como, Italy), pp. 20–29, IEEE CS Press, 2005.

[164] A. Marcus and J. I. Maletic, “Identification of high-level concept clones in source
code,” in Proceedings of 16th IEEE International Conference on Automated Software
Engineering, (San Diego, California, USA), pp. 107–114, IEEE CS Press, 2001.

[165] D. Poshyvanyk, Y. Gael-Gueheneuc, A. Marcus, G. Antoniol, and V. Rajlich, “Fea-
ture location using probabilistic ranking of methods based on execution scenarios and
information retrieval,” IEEE Transactions on Software Engineering, vol. 33, no. 6,
pp. 420–432, 2007.

[166] D. Poshyvanyk and A. Marcus, “The conceptual coupling metrics for object-oriented
systems,” in Proceedings of 22nd IEEE International Conference on Software Mainte-
nance (ICSM’06), pp. 469 – 478, 2006.

[167] A. De Lucia, M. Di Penta, and R. Oliveto, “Improving source code lexicon via trace-
ability and information retrieval,” IEEE Transactions on Software Engineering, vol. 2,
no. 37, pp. 205–227, 2011.

[168] D. Binkley, H. Feild, D. Lawrie, and M. Pighin, “Software fault prediction using lan-
guage processing,” in Proceedings of the Testing: Academic and Industrial Conference
Practice and Research Techniques, pp. 99–110, IEEE Computer Society, 2007.

[169] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, and E. Merlo, “Recovering trace-
ability links between code and documentation,” IEEE Transactions on Software Engi-
neering, vol. 28, no. 10, pp. 970–983, 2002.

[170] A. Marcus and J. I. Maletic, “Recovering documentation-to-source-code traceability
links using latent semantic indexing,” in Proceedings of 25th International Conference
on Software Engineering, (Portland, Oregon, USA), pp. 125–135, IEEE CS Press,
2003.

[171] A. De Lucia, F. Fasano, R. Oliveto, and G. Tortora, “Recovering traceability links
in software artefact management systems using information retrieval methods,” ACM
Transactions on Software Engineering and Methodology, vol. 16, no. 4, 2007.

261

REFERENCES

[172] J. H. Hayes, A. Dekhtyar, and S. K. Sundaram, “Advancing candidate link generation
for requirements tracing: The study of methods.,” IEEE Transactions on Software
Engineering, vol. 32, no. 1, pp. 4–19, 2006.

[173] M. Gethers, R. Oliveto, D. Poshyvanyk, and A. D. Lucia, “On integrating orthogonal
information retrieval methods to improve traceability recovery,” in Proc. of ICSM,
pp. 133–142, 2011.

[174] H. U. Asuncion, A. Asuncion, and R. N. Taylor, “Software traceability with topic mod-
eling,” in Proceedings of the 32nd ACM/IEEE International Conference on Software
Engineering, (Cape Town, South Africa), pp. 95–104, ACM Press, 2010.

[175] J. Cleland-Huang, A. Czauderna, M. Gibiec, and J. Emenecker, “A machine learning
approach for tracing regulatory codes to product specific requirements,” in Proc. of
ICSE, pp. 155–164, 2010.

[176] J. I. Maletic and A. Marcus, “Supporting program comprehension using semantic and
structural information,” in Proceedings of 23rd International Conference on Software
Engineering, (Toronto, Ontario, Canada), pp. 103–112, IEEE CS Press, 2001.

[177] A. Kuhn, S. Ducasse, and T. Gîrba, “Semantic clustering: Identifying topics in source
code,” Information and Software Technology, vol. 49, no. 3, pp. 230–243, 2007.

[178] P. Baldi, C. V. Lopes, E. Linstead, and S. K. Bajracharya, “A theory of aspects as
latent topics,” in Proceedings of the 23rd Annual ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications, (Nashville,
TN, USA), pp. 543–562, ACM Press, 2008.

[179] E. Linstead, C. V. Lopes, and P. Baldi, “An application of latent dirichlet allocation
to analyzing software evolution,” in Proceedings of the 7th International Conference
on Machine Learning and Applications, (San Diego, California, USA), pp. 813–818,
IEEE CS Press, 2008.

[180] S. W. Thomas, B. Adams, A. E. Hassan, and D. Blostein, “Modeling the evolution of
topics in source code histories,” in Proceedings of the 8th International Working Con-
ference on Mining Software Repositories, (Honolulu, HI, USA), pp. 173–182, IEEE
Press, 2011.

[181] A. Hindle, N. A. Ernst, M. W. Godfrey, and J. Mylopoulos, “Automated topic naming
to support cross-project analysis of software maintenance activities,” in Proceedings of

262

REFERENCES

the 8th International Working Conference on Mining Software Repositories, (Waikiki,
Honolulu, USA), pp. 163–172, IEEE CS Press, 2011.

[182] S. Medini, G. Antoniol, Y.-G. Guéhéneuc, M. Di Penta, and P. Tonella, “Scan: an ap-
proach to label and relate execution trace segments,” in Proceedings of the 19th Work-
ing Conference on Reverse Engineering, (Kingston, Ontario, Canada), IEEE Press,
2012.

[183] S. Rastkar, G. C. Murphy, and G. Murray, “Summarizing software artifacts: a case
study of bug reports,” in Proceedings of the 32nd ACM/IEEE International Conference
on Software Engineering, (Cape Town, South Africa), pp. 505–514, ACM Press, 2010.

[184] S. Rastkar, “Summarizing software concerns,” in Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering - Student research competition,
(Cape Town, South Africa), pp. 527–528, ACM Press, 2010.

[185] R. P. L. Buse and W. Weimer, “Automatically documenting program changes,” in Pro-
ceedings of the 25th IEEE/ACM International Conference on Automated Software En-
gineering, (Antwerp, Belgium), pp. 33–42, ACM Press, 2010.

[186] G. Murphy, Lightweight Structural Summarization as an Aid to Software Evolution.
PhD thesis, University of Washington, 1996.

[187] G. Sridhara, E. Hill, D. Muppaneni, L. L. Pollock, and K. Vijay-Shanker, “Towards
automatically generating summary comments for java methods,” in Proceedings of
the 25th IEEE/ACM International Conference on Automated Software Engineering,
(Antwerp, Belgium), pp. 43–52, ACM Press, 2010.

[188] G. Sridhara, L. L. Pollock, and K. Vijay-Shanker, “Automatically detecting and de-
scribing high level actions within methods,” in Proceedings of the 33rd International
Conference on Software Engineering, (Honolulu, HI, USA), pp. 101–110, ACM Press,
2011.

[189] J. Anvik and G. C. Murphy, “Reducing the effort of bug report triage: Recommenders
for development-oriented decisions,” ACM Transactions on Software Engineering and
Methodology, vol. 20, no. 3, p. 10, 2011.

[190] C. Wang, J. Han, Y. Jia, J. Tang, D. Zhang, Y. Yu, and J. Guo, “Mining advisor-
advisee relationships from research publication networks,” in Proceedings of the 16th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
Washington, DC, USA, July 25-28, 2010, pp. 203–212, 2010.

263

REFERENCES

[191] G. Canfora and L. Cerulo, “Supporting change request assignment in open source
development,” in Proceedings of the 2006 ACM Symposium on Applied Computing
(SAC), Dijon, France, April 23-27, 2006, pp. 1767–1772, ACM, 2006.

[192] A. Tamrawi, T. T. Nguyen, J. M. Al-Kofahi, and T. N. Nguyen, “Fuzzy set and cache-
based approach for bug triaging,” in SIGSOFT/FSE’11 19th ACM SIGSOFT Sympo-
sium on the Foundations of Software Engineering and 13rd European Software En-
gineering Conference, Szeged, Hungary, September 5-9, 2011, pp. 365–375, ACM,
2011.

[193] C. Bird, N. Nagappan, B. Murphy, H. Gall, and P. T. Devanbu, “Don’t touch my code!:
examining the effects of ownership on software quality,” in SIGSOFT/FSE’11 19th
ACM SIGSOFT Symposium on the Foundations of Software Engineering and 13rd
European Software Engineering Conference, Szeged, Hungary, September 5-9, 2011,
pp. 4–14, ACM, 2011.

[194] G. Robles, J. M. González-Barahona, and I. Herraiz, “Evolution of the core team of
developers in libre software projects,” in Proceedings of the 6th International Working
Conference on Mining Software Repositories, MSR 2009, Vancouver, BC, Canada,
May 16-17, 2009, pp. 167–170, IEEE, 2009.

[195] D. J. Sheskin, Handbook of Parametric and Nonparametric Statistical Procedures.
Chapman & Hall/CRC, 4 ed., 2007.

[196] I. Fronza, A. Sillitti, and G. Succi, “An interpretation of the results of the analysis
of pair programming during novices integration in a team,” in Proceedings of the
Third International Symposium on Empirical Software Engineering and Measurement,
ESEM 2009, October 15-16, 2009, Lake Buena Vista, Florida, USA, pp. 225–235,
2009.

[197] M. Zhou and A. Mockus, “Growth of newcomer competence: challenges of globaliza-
tion,” in Proceedings of the Workshop on Future of Software Engineering Research,
FoSER 2010, at the 18th ACM SIGSOFT International Symposium on Foundations of
Software Engineering, 2010, Santa Fe, NM, USA, November 7-11, 2010, pp. 443–448,
2010.

[198] V. S. Sinha, S. Mani, and S. Sinha, “Entering the circle of trust: developer initiation as
committers in open-source projects,” in Proceedings of the 8th International Working
Conference on Mining Software Repositories, MSR 2011, Waikiki, Honolulu, HI, USA,
May 21-28, 2011, Proceedings, pp. 133–142, IEEE, 2011.

264

REFERENCES

[199] C. Bird, A. Gourley, P. T. Devanbu, A. Swaminathan, and G. Hsu, “Open borders?
immigration in open source projects,” in Fourth International Workshop on Mining
Software Repositories, MSR 2007, Minneapolis, MN, USA, May 19-20, 2007, Pro-
ceedings, p. 6, IEEE Computer Society, 2007.

[200] D. Cubranic, G. C. Murphy, J. Singer, and K. S. Booth, “Hipikat: A project memory
for software development,” IEEE Trans. Software Eng., vol. 31, no. 6, pp. 446–465,
2005.

[201] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, and E. Merlo, “Recovering trace-
ability links between code and documentation,” IEEE Trans. Softw. Eng., vol. 28,
no. 10, pp. 970–983, 2002.

[202] A. Bacchelli, M. D’Ambros, M. Lanza, and R. Robbes, “Benchmarking lightweight
techniques to link e-mails and source code,” in 16th Working Conference on Reverse
Engineering, WCRE 2009, 13-16 October 2009, Lille, France, pp. 205–214, IEEE
Computer Society, 2009.

[203] A. Bacchelli, M. Lanza, and R. Robbes, “Linking e-mails and source code artifacts,” in
Proceedings of the 32nd ACM/IEEE International Conference on Software Engineer-
ing - Volume 1, ICSE 2010, Cape Town, South Africa, 1-8 May 2010, pp. 375–384,
ACM, 2010.

[204] A. Bacchelli, M. D’Ambros, and M. Lanza, “Extracting source code from e-mails,”
in The 18th IEEE International Conference on Program Comprehension, ICPC 2010,
Braga, Minho, Portugal, June 30-July 2, 2010, pp. 24–33, IEEE Computer Society,
2010.

[205] D. Klein and C. D. Manning, “Fast exact inference with a factored model for natural
language parsing,” in Advances in Neural Information Processing Systems 15 [Neural
Information Processing Systems, NIPS 2002, December 9-14, 2002, Vancouver, British
Columbia, Canada], pp. 3–10, MIT Press, 2002.

[206] M. L. Collard, H. H. Kagdi, and J. I. Maletic, “An xml-based lightweight c++ fact ex-
tractor,” in 11th International Workshop on Program Comprehension (IWPC 2003),
May 10-11, 2003, Portland, Oregon, USA, pp. 134–143, IEEE Computer Society,
2003.

[207] D. J. Sheskin, Handbook of Parametric and Nonparametric Statistical Procedures
(fourth edition). Chapman & All, 2007.

265

REFERENCES

[208] A. Bacchelli, M. Lanza, and V. Humpa, “RTFM (read the factual mails) - augmenting
program comprehension with remail,” in Proceedings of the European Conference on
Software Maintenance and Reenginering, pp. 15–24, 2011.

[209] N. Bettenburg, B. Adams, A. E. Hassan, and M. Smidt, “A lightweight approach to
uncover technical artifacts in unstructured data,” in Proceedings of the IEEE Interna-
tional Conference on Program Comprehension, pp. 185–188, 2011.

[210] N. Bettenburg, S. W. Thomas, and A. E. Hassan, “Using fuzzy code search to link code
fragments in discussions to source code,” in 16th European Conference on Software
Maintenance and Reengineering, CSMR 2012, Szeged, Hungary, March 27-30, 2012,
pp. 319–328, IEEE, 2012.

[211] J. Cleland-Huang, O. Gotel, and A. E. Zisman, Software and Systems Traceability.
Springer, February 2012.

[212] M. P. Robillard, R. J. Walker, and T. Zimmermann, “Recommendation systems for
software engineering,” IEEE Software, vol. 27, pp. 80–86, July/August 2010.

[213] D. Cubranic, G. C. Murphy, J. Singer, and K. S. Booth, “Hipikat: A project memory for
software development,” IEEE Transactions on Software Engineering, vol. 31, pp. 446–
465, 2005.

[214] A. J. Ko, B. A. Myers, and D. H. Chau, “A linguistic analysis of how people describe
software problems,” in Proceedings of the IEEE Symposium on Visual Languages and
Human-Centric Computing, pp. 127–134, 2006.

[215] A. J. Ko and P. K. Chilana, “Design, discussion, and dissent in open bug reports,” in
iConference, pp. 106–113, 2011.

[216] L. H. Etzkorn, L. L. Bowen, and C. G. Davis, “An approach to program understanding
by natural language understanding,” Natural Language Engineering, vol. 5, pp. 1–18,
1999.

[217] L. Tan, D. Yuan, G. Krishna, and Y. Zhou, “/* iComment: Bugs or bad comments?
*/,” in Proceedings of the 21st ACM Symposium on Operating Systems Principles
(SOSP07), October 2007.

[218] H. Zhong, L. Zhang, T. Xie, and H. Mei, “Inferring specifications for resources
from natural language API documentation,” Automated Software Engineering Jour-
nal, 2011.

266

REFERENCES

[219] G. Sridhara, E. Hill, D. Muppaneni, L. L. Pollock, and K. Vijay-Shanker, “Towards
automatically generating summary comments for java methods,” in Proceedings of the
IEEE/ACM International Conference on Automated Software Engineering, pp. 43–52,
2010.

[220] S. Haiduc, J. Aponte, L. Moreno, and A. Marcus, “On the use of automated text sum-
marization techniques for summarizing source code,” in Proceedings of the IEEE In-
ternational Working Conference on Reverse Engineering, pp. 35–44, 2010.

267

REFERENCES

268

List of Figures

1.1 Newcomer Training Process: three high level phases. 21

2.1 Hibernate: network of five developers as it is captured from different sources
of information. 42

3.1 Evolution of emerging teams and of their technical activities. 58
3.2 Modularization Quality (MQ) computation for files modified by an emerging

team. 64
3.3 A stable groups of developers (in blue) that joined different teams during

software evolution. 67
3.4 MQ and CCBC before and after team splits. 69
3.5 MQ and CCBC before and after team mergers. 70
3.6 Example of team merger in Samba: as Team 1 no longer need to develop test

cases (mostly available in release 3.0.20). 72
3.7 Example of team split in Apache httpd from release 2.2.4 to release 2.2.12. . 73

4.1 Process used to divide upgraded and not upgraded releases. 86
4.2 Evolution of the size in the Apache ecosystem. 89
4.3 Evolution of the projects and dependencies in the Apache ecosystem. 90
4.4 Evolution of active developers in the Apache ecosystem. 91
4.5 Developers’ overlap in the Apache ecosystem in 2013. 92
4.6 Snapshots of projects and their dependencies in the Apache ecosystem history. 94
4.7 Developers’ overlap (in percentage) in projects having and not having a de-

pendency. 95
4.8 Communication network between Geronimo and CFX developers. CFX’s

developers are shown in blue, Geronimo’s developers in orange, while yellow
circles are developers overlapping between the two projects. 100

269

LIST OF FIGURES

5.1 Example of task description and related questions. 117
5.2 Usage (in percentage) of different kinds of artifacts. Ug = undergraduate

students, Gr = graduate students. 122
5.3 Perceived usefulness of the different kinds of artifacts as indicated by partic-

ipants. Ug = undergraduate students, Gr = graduate students. 125
5.4 Most frequent navigational patterns and distribution of their repetitions. S =

Sequence Diagram, D = Class Diagram, U = Use Case, C = Source Code. . . 130

6.1 eXVantage: Mean overlap between automatically-produced labels and manually-
generated labels. 152

6.2 JHotDraw: Mean overlap between automatically-produced labels and manually-
generated labels. 153

6.3 Cumulative distribution of agreement among subjects. 154
6.4 Entropy of terms in the classes sampled for our experiments. 160
6.5 Distance between source code elements. 161

7.1 Mentor identification performances for the best combinations of f1–f5 and
for the baseline (f5) considering mailing list data 189

7.2 Mentor identification performances for the best combinations of f1–f5 and
for the baseline (f5) considering mailing list and issue tracker data 190

7.3 Survey questionnaire answers: generic questions on mentoring activity and
its importance. 199

7.4 Example (from Samba) of developers’ network involving a newcomer (Bjo-
ern) and a mentor (James). 200

7.5 YODA in Eclipse: information flows. 203
7.6 Mining candidate mentors from software repositories. 204
7.7 How YODA (a) shows mentorship relations in a project and (b) allows to

browse information about a developer and to get in touch with him. 205
7.8 Mentor recommendation using an implicit query based on the context which

the developer is working on. 206
7.9 Explicit (natural language) request for mentor. 206

8.1 Precision and method coverage for different levels of similarity. Note that
the maximum possible coverage would be (see Step 3 of Table II) 22% for
Eclipse and 65% for Lucene. 222

8.2 CODES information flow. 232
8.3 Browsing the mined descriptions. 233

270

LIST OF FIGURES

8.4 Generating a Javadoc comment from mined descriptions. 235

271

List of Tables

2.1 Characteristics of the analyzed projects. 36
2.2 RQ1: overlap (in percentage) between authors contributing to different sources.

cc ≡ issues ∪ mails ∪ chat. 43
2.3 RQ2: Number of author links found in the different sources of information,

and overlap (in percentage) between them. 45
2.4 Similarity measure of topics extracted from different communication channels. 47
2.5 RQ3: Percentage of Overlap between Top Five Coordinators and Mentors as

Extracted From the Four Sources of Information. 48
2.6 RQ3: Hibernate’s Top five Project’s Members: Coordinators and Mentors. . . 49
2.7 Studies that analyzed Developers Social Networks. 53

3.1 Characteristics of the four projects under study. 61
3.2 Evolution of teams across software releases. 66
3.3 Inactive (IN), new (N), and developers that likely left the project (DL). 68
3.4 Change of MQ and CCBC when teams split: Wilcoxon test results and Cliff’s d. 68
3.5 Change of MQ and CCBC when teams merge: Wilcoxon test results and

Cliff’s d. 71

4.1 Tags assigned to classify the mailing lists discussions. 88
4.2 Tags manually assigned to the 871 discussions talking about dependencies

between projects. 96
4.3 Studies that analyzed software ecosystems. 103

5.1 Recall, Precision, and F-measure achieved by participants when performing
the tasks. 121

5.2 Use (percentage of tasks and time spent) of different kinds of artifacts: de-
scriptive statistics. 121

273

LIST OF TABLES

5.3 Percentage of time spent on artifacts by participants with different experi-
ence: Mann-Whitney test and Cliff’s d effect size (positive values indicate
differences in favor of graduate students, negative in favor of undergraduates). 124

5.4 What participants looked first. 127
5.5 Patterns followed before reaching source code. 128
5.6 Average transition frequencies between the kinds of artifacts. 128
5.7 Most frequent navigational patterns. 130

6.1 Classes from JHotDraw and eXVantage used as objects of our study 142
6.2 eXVantage: Overlap between the "oracle" summaries used for the two exper-

iments . 155
6.3 JHotDraw: Overlap between the "oracle" summaries used for the two exper-

iments . 155
6.4 Cliff’s d for differences of overlap between automatic labeling and human

labeling provided by each subject. Values shown with ∗ for comparisons
where the Wilcoxon Rank Sum test indicates a significant difference. We use
S, M, and L to indicate a small, medium and large effect size, respectively. . . 156

6.5 SrcTermsInOracle: Percentage of oracle words belonging to different source
code entities, and (in parenthesis)OracleTermsInSrc: percentage of entity
words considered in the oracle. 157

6.6 Examples of high and low labeling overlap achieved on eXVantage. Terms in
bold face represent the gold words used by subjects. 162

6.7 Examples of high and low labeling overlap achieved on JHotDraw. Terms in
bold face represent the gold words used by subjects. 163

6.8 Average overlap between manual labeling and automated labeling collected
by the terms entropy (high and low terms entropy). M represents the number
of methods in the class. 164

6.9 Permutation test by Method and terms entropy. 164

7.1 Characteristics of the five projects analyzed, and of the training and test sets
for evaluating YODA. 183

7.2 Precision (%) and number of newcomer-mentor pairs identified for different
values of λ considering only Mailing lists data. 192

7.3 Precision (%) and number of newcomer-mentor pairs identified for different
values of λ considering both Mailing lists and Issue Trackers data. 193

7.4 Number and percentage of correct and incorrect top 1 and top 2 mentor rec-
ommendations for newcomers in the test set considering only Mailing lists. . 196

274

LIST OF TABLES

7.5 Number and percentage of correct and incorrect top 1 and top 2 mentor rec-
ommendations for newcomers in the test set considering both Mailing lists
and Issue Trackers. 196

7.6 Joiners and LTCs. 198

8.1 Characteristics of the two subject systems. 219
8.2 Number of paragraphs and method coverage after applying filtering from

Steps 2, 3 and 4 of the approach. 221
8.3 Examples of true positive paragraphs for Lucene. 225
8.4 Examples of true positive paragraphs for Eclipse. 226
8.5 Examples of false positive paragraphs for Eclipse. 227
8.6 Examples of false positive paragraphs for Lucene. 228
8.7 Examples of false negative paragraphs for Eclipse. 229
8.8 Examples of false negative paragraphs for Lucene. 230

275

LIST OF TABLES

276

Acronyms

ANOVA Analysis of Variance

API Application Programming Interface

ASF Apache Software Foundation

CCBC Conceptual Coupling Between Classes

CCM Conceptual Coupling Between Methods

CODES mining sourCe cOde Descriptions from developErs diScussions

DOAP Description Of A Project

DSN Developers’ Social Network

FLUORITE Full of Low−level User Operations Recorded In The Editor

HLA High-Level Artifacts

IDE Interactive Development Environment

IR Information Retrieval

IRC Internet Relay Chat

KLOC Kilo Lines of Code

KNLOC Non-commented Kilo Lines of Code

LDA latent Dirichlet allocation

LLA Low-Level Artifacts

LSI Latent Semantic Indexing

ML Machine Learning

MQ Modularization Quality

OSS Open-source Software

277

LIST OF TABLES

REST Representational State Transfer

RTM Relational Topics Model

SE Software Engineering

SNA Social Network Analysis

SVD Singular Value Decomposition

SVN version control system

TLR Traceability Link Recovery

TPL Third-Party Libraries

UML Unified Modeling Language

278

LIST OF TABLES

279

