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Abstract

Simulation-based testing helps in the improvement of cyber-physical systems (CPS) such as
self-driving cars (SDC) because it increases the efficiency, diversity, and relevance of tests
from a human perspective. The importance of human feedback in validating test cases cannot
be overstated. Despite this, testing SDCs in simulated environments does not take human
factors into account. Previous research demonstrates how to optimize the test case through
selection, improve classification and accuracy when test cases result in a fault, and improve
testing cost-effectiveness. However, test validity, relevance, and safety perception from a hu-
man point of view were not addressed. In this thesis, we investigate the variety of possible
scenarios (static and dynamic obstacles) and examine how humans perceive safety and the
level of realism of the SDC test case with various factors such as interaction with the car
and different views (i.e., the VR view, the outside view, and the driver’s view). We propose
an approach called SDC-Alabaster (SDC humAn-in-the Loop simulAtion-BASed Testing sElf-
driving caRs) that uses a virtual reality (VR) headset to illustrate SDC test scenarios, create
the sensation of being in SDCs and to enable users to experiment with the experience. Our
results show the perception of realism and safety without obstacles is higher than with ob-
stacles, and CARLA was more realistic and safer than the BeamNG simulator with a p-value
> 0.01e-16, The distribution is 85%(Â12). Our results also show interactions with vehicles
make humans safer compared to those without interactions with a p-value > 0.001, and the
distribution is 36%(Â12), and users’ perceptions of safety and realism vary with and without
VR headsets, and the failure cases that are most important to test are also regarded as less re-
alistic by participants’. In addition, we discovered factors such as using an advanced AI agent
for traffic cars, using voice feedback in VR, and integrating participants’ driving will help
test scenarios be more realistic, and the perception of participants’ safety can be improved in
simulation-based testing of SDCs.





Zusammenfassung

Simulationsbasierte Tests helfen bei der Verbesserung von Cyber-Physical Systems (CPS) wie
selbstfahrende Autos (SDC), weil sie die Effizienz, Vielfalt und Relevanz von Tests aus men-
schlicher Sicht erhöhen. Die Bedeutung des menschlichen Feedbacks bei der Validierung
von Testfällen kann gar nicht hoch genug eingeschätzt werden. Trotzdem werden beim
Testen von SDCs in simulierten Umgebungen menschliche Faktoren nicht berücksichtigt.
Frühere Forschungen haben gezeigt, wie man den Testfall durch die Auswahl optimieren
kann, sowie die Klassifizierung und Genauigkeit verbessern kann, wenn Testfälle zu einem
Fehler führen, und wie man die Kosteneffizienz von Tests verbessern kann. Die Validität, Rel-
evanz und Sicherheitswahrnehmung von Tests aus menschlicher Sicht wurden jedoch nicht
berücksichtigt. In dieser Arbeit untersuchen wir die Vielfalt möglicher Szenarien (statis-
che und dynamische Hindernisse) und untersuchen, wie Menschen die Sicherheit und den
Realitätsgrad des Testfalls unter Berücksichtigung verschiedener Faktoren wie Interaktion
mit dem Fahrzeug und verschiedenen Blickwinkeln (d. h. VR-Ansicht, Aussenansicht und
Fahrersicht) wahrnehmen. Wir schlagen einen Ansatz namens SDC-Alabaster (SDC humAn-
in-the Loop simulAtion-BASed Testing sElf-driving caRs) vor, der ein Virtual Reality (VR)-
Headset verwendet, um SDC-Testszenarien zu veranschaulichen, das Gefühl zu erzeugen, sich
in SDCs zu befinden, und den Benutzern zu ermöglichen, mit der Umgebung zu experimen-
tieren. Unsere Ergebnisse zeigen, dass die Wahrnehmung von Realismus und Sicherheit ohne
Hindernisse höher ist als mit Hindernissen, und CARLA war realistischer und sicherer als der
BeamNG Simulator mit einem p-Wert > 0,01e-16 und einer Verteilung von 85%(Â12). Unsere
Ergebnisse zeigen auch, dass Interaktionen mit Fahrzeugen das Gefühl von mehr Sicher-
heit geben als solche ohne Interaktionen. Mit einem p-Wert > 0,001, und einer Verteilung
von 36%(Â12), variiert die Wahrnehmung von Sicherheit und Realismus durch die Benutzer,
sowohl mit und ohne VR-Headsets, und die Fehlerfälle, die am wichtigsten zu testen sind,
werden von den Teilnehmern auch als weniger realistisch angesehen. Darüber hinaus haben
wir herausgefunden, dass Faktoren wie die Verwendung eines fortschrittlichen KI-Agenten
für Verkehrsfahrzeuge, die Verwendung von Sprachfeedback in VR und die Integration des
Fahrverhaltens der Teilnehmer dazu beitragen, dass die Testszenarien realistischer sind und
die Wahrnehmung der Sicherheit der Teilnehmer bei simulationsbasierten Tests von SDCs
verbessert werden kann.
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Chapter 1

Introduction

According to Waymo1 there were 1.36 million deaths worldwide due to vehicle crashes in
2016 and an additional 836 billion in harm from loss of life and injury each year [64]. This
number of tragedies has been growing over the years. Self-driving Cars hold the promise of
improving road safety and offering new mobility options to millions of people. Whether they’re
saving lives or helping people run errands, commute to work, or drop kids off at school, fully
autonomously driven vehicles to hold enormous potential to transform people’s lives for the
better [64].

Testing of self-driving cars (SDCs) has been getting more and more attention from devel-
opers and test engineers in recent years. There have been multiple fatal events with Tesla
self-driving cars [48,59,63], prompting us to consider the necessity of SDC testing, as it may
be fatal to human beings if they are not adequately tested to assure safety. Ideally, the tests
for life-critical SDCs should ensure trust in the system, but they should also be well integrated
into the development process without increasing the costs too much [38].

Testing SDC software in complex (physical) conditions (i.e., with dense traffic and ad-
verse weather conditions) is not only costly but also dangerous, with fatalities already occur-
ring [24]. Virtual testing, in which SDC software is tested in computer simulations, is a more
efficient, cheaper, and safer option [2]. Simulators for robotics are used to test robots in a
controlled environment without requiring physical hardware [2]. Industrial robots, unmanned
aerial vehicles, and autonomous (self-driving) cars have been simulated using popular simu-
lators like Gazebo [36], V-REP [53], and Webots [44].

SDCs represent a specific use case of Cyber-Physical Systems (CPSs). Hence, as for gen-
eral CPSs, SDCs also face significant challenges in terms of verification and validation for
safety assessment to prevent road accidents and traffic congestion [50]. Because Artificial In-
telligence (AI) is potentially unpredictable [66], its use in SDCs raises concerns that must be
addressed through appropriate verification and validation processes that can address trust-
worthy AI and safe autonomy. i.e., Deep Blue IBM Watson 2 and AlphaZero (Go) 3 did not
know what specific decisions their AI would make for every turn. On the other hand, creat-
ing appropriate test scenarios is time-consuming and challenging to replicate the real-world
environment [24].

Immersive Computing Technology (ICT), which is another name for Virtual Reality (VR),
is a new way to interact with the digital world, which is always changing. VR is often de-
scribed as a set of technologies that enable humans to have an immersive experience of a

1https://waymo.com/
2https://www.ibm.com/ibm/history/ibm100/us/en/icons/deepblue/
3https://www.deepmind.com/research/highlighted-research/alphago

https://waymo.com/
https://www.ibm.com/ibm/history/ibm100/us/en/icons/deepblue/
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world beyond reality [6]. The concept of combining virtual and real-world domains is not new,
and it has been used in a variety of contexts, such as the exploration of the International
Space Station (ISS) [56], which would allow astronauts to perform mission-critical activities
during training sessions (i.e., docking cargo capsules, conducting spacewalks, and perform-
ing mission-critical activities) 4, 5. Another domain where VRs have been used concerns e-
health training sessions: surgery planning and surgical simulators on a virtual patient are
reality medical healthcare [55], which have a human life-critical nature like SDCs. Moreover,
telesurgery, or remote surgery, which uses augmented and virtual reality, represents another
critical VR application [18].

In the real world, there are blind spots in the AI of SDCs that can only be fixed by simu-
lating user feedback before putting a person in the same situation as in the real world [33].
In previous work, they showed how incorporating humans into the artificial intelligence train-
ing loop can improve SDCs, thereby improving the training efficiency and performance of
the deep reinforcement learning algorithm under human supervision [65]. Accidents are un-
predictable due to different constraints. AI will not be trained for every possible accident
scenario. In contrast, no previous work has attempted to fully immerse humans in the context
of simulation-based testing environments; this will be the focus of the thesis. The following
section will look at the problem statement and research questions.

1.1 Problem Statement and Research Questions

Previous studies on SDCs proposed tools for test selection, prioritization, and assessing the
cost-effectiveness of simulation-based testing for SDCs [8, 9, 21, 35]. Test selection aims to
choose only relevant test cases that are likely to fail, whereas test prioritization specifies
the order in which the selected tests are executed, allowing faults to be found earlier in the
testing process. During the test selection process, certain scenarios may be overlooked or dis-
regarded. In the real world, this could lead to situations or collisions going undetected [27].

SDC-Scissor cuts down on the number of long and complex simulations executed and dras-
tically increases the cost-effectiveness of simulation-based testing of SDCs software [35]. With
12000 tests in a dataset, it was shown that SDC-Scissor achieved a higher classification F1-
score (between 47% and 90%) [35].

Due to the limited predictability of safety-critical domains within SDC, some verification
and validation issues arise. By having humans evaluate the SDC’s [50] software, we could re-
duce the number of undiscovered scenarios and produce more reliable software [50]. Human
assessment and perception of SDCs can be a source of pertinent information for ensuring that
SDCs behave safely in a broader range of scenarios [37].

In this thesis, we enhance the test case generation process by including more obstacles
and dynamic behaviours, and we use a human-based experiment to verify the validity of the
generated test scenarios. In order to give users the virtual experience that they are actually in
SDC, we have incorporated virtual reality technology into the simulator. By including a human
review in the testing, the procedure improves the test case for this issue. User feedback
gives context-specific information about discovered problems or exceptions during automated
testing.

To address the aforementioned challenges, we concentrate on technology and research-
based questions. Whereas technological research questions are primarily concerned with the

4https://www.nasa.gov/specials/trackartemis/
5https://www.nasa.gov/marsxr-challenge

https://www.nasa.gov/specials/trackartemis/
https://www.nasa.gov/marsxr-challenge
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technological implementation of a solution to a problem statement, research questions seek
to validate data through scientific experiments.

Technological question - RQ1: How far can we automate test cases to generate
a variety of scenarios with various environmental conditions and static and dynamic
object placement, and safe and unsafe SDCs tests?

Answering the technical question RQ1 regarding the extent to which we can generate
test scenarios with various environmental conditions and semaphores, such as static objects
such as cylinders, road humps, and trees, and dynamic objects There are other vehicles and
pedestrians on the road, simulating actual traffic. In addition, to evaluate the performance of
SDCs in different weather conditions, These obstacles will simulate real-world scenarios and
enhance the SDC’s test cases, and we will be able to classify how safe or unsafe the SDCS is
with various obstacles.

Technological question - RQ2: To what extent is it possible to integrate simulator
scenarios into virtual reality (VR)?

RQ2is also a technological question that asks how far the SDC’s simulator test scenarios
can be integrated with virtual reality (VR). VRs may aid in the evaluation of testing scenarios
by allowing people to immerse themselves in an immersive experience to test as if in reality,
generating significant insights that may reduce the number of RQ2 test cases. Virtual reality
lets people see roads from a different point of view. This brings the scenarios closer to reality
and gives useful feedback that helps choose better tests and provides human-based criteria
that could support future research on test minimization, such as identifying potentially dan-
gerous road stretches from a human point of view.

RQ3: How closely does the SDC test case resemble a real-world driving event, and
what is the human perception of SDCs test failures/safety?

In RQ1 and RQ2, we will generate test scenarios with obstacles to simulate real-world
situations and integrate SDC’s simulator with VR. In RQ3, we investigate the degree to which
the generated test scenarios resemble the real world and how humans perceive whether a test
case is safe or unsafe. also investigates how human perception of safety differs depending on
the mode of visualization, such as a desktop screen, VR with an outside view (view from the
rear of the vehicle), or the driver’s view. In order to answer this question, we conducted a
survey-based controlled experiment.

RQ4: What is the human perception of SDC’s test failures/safety when humans can
interact with the car?

Similar to RQ3, RQ4 we investigate how humans perceive safety when they have some kind
of interaction and compare the results without interaction.

RQ5:(Future work) What are the road segments considered unsafe from a human’s
perspective?
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For the future work of this thesis, we are interested in determining how we can perform a
test minimization by considering the road segments to be hazardous from a human standpoint.
Test case minimization techniques are used to minimize the testing cost in terms of execution
time, resources, etc. The purpose of test case minimization is to generate a representative
set from a test suite that satisfies all the same requirements as the original test suite with a
minimum number of tests. Collaboration with non-technical users and developers from other
fields to collaborate alongside software developers in CPS development and empower users
by providing new opportunities such as remote collaboration and training [45].

1.2 Summary of Results & Contributions

Results of our study show that SDC-Alabaster test case classification (pass/fail) closely resem-
bles the human perception of SDCs’ test failures/safety (RQ3), and perceptions of safety and
realism vary with the simulating environment (i.e., with or without VR). In addition, we dis-
covered that the failure cases that are most important to tests are perceived as less realistic
(RQ3). Our results show the perception of realism and safety among users is significantly
dependent on the presence of obstacles in the given scenario. Our results also show CARLA
was more realistic and safer than BeamNG because participants found CARLA’s scenarios
more realistic. We also found that interactions with cars make humans safer compared to
when there is no interaction. We also found that interactions with vehicles increased humans’
perception of safety compared to when there was no interaction. In addition, we discovered
that the age, gender, field of expertise, previous use of virtual reality, computer gaming expe-
rience, and the number of years of testing experience of the participants all play a significant
role in the level of safety and perception of realism.

The contributions of this thesis can be summarized as follows:

• Extending of SDC-Scissor: We enhanced SDC-Scissor by incorporating SBST226 test
generators.

• Integrate CARLA Integrating the CARLA simulator and adding obstacles to scenarios
(RQ1): We have incorporated the CARLA simulator into the testing pipeline. Added static
(bumps, trees, cylinders) and dynamic (other vehicles/pedestrians/weather) obstacles to
the test case scenarios that were generated.

• VR simulation integration (RQ2): Integration of virtual reality (HTC Vive Pro, Oculus
Quest 2) with the SDC simulator for visualizing test scenarios.

• GUI graphical user interface to execute commands : Graphical user interface(GUI) for
executing the commands of the pipeline.

• Interaction Interaction between the user and car in real-time test execution : User
interaction with real-time test scenarios utilizing hotkeys such as identifying the rel-
evant road segments that are hazardous, Starting/Stopping the Vehicles, change the
viewpoint, and slider to access input allows the user to perceive safety in real-time.

• Selection & Experiment select test cases and conduct a survey for the experiment :
Generate the test case dataset and select/set up the test scenario for both BeamNG and
CARLA Simulate and set up Per-survey and On experiment survey.

6https://sbst22.github.io/
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• Conducted controlled experiment investigating the perception of safety by humans
into the testing loop (RQ3): Set up and conduct a controlled experiment to determine
whether humans consider test case scenarios to be safe or dangerous.

• Analysis evaluation of the survey results (RQ4): Assessment of the user feedback from
controlled experiment and Analyze results.





Chapter 2

Background and Related Work

Self-driving systems, also known as driverless cars, are vehicles that can sense their sur-
roundings using sensors such as cameras, LIDAR, ultrasonics, electrics, and IMU sensors and
move in defined lanes without human intervention [69]. Technologies for self-driving cars,
primarily work with the computer system by automating vehicle control components. These
technological components are capable of a variety of tasks, including fully automated driv-
ing, lane-keeping, adaptive drive control, forward collision warning, and anti-lock brakes. A
variety of sensors, actuators, and cameras are combined in an autonomous vehicle.

2.1 Background on SDCs Simulator

Several simulation tools have been created to help developers in various phases of CPS de-
sign and validation. These methods offer varying degrees of precision and realism at varying
execution costs, i.e., simulations with a higher degree of precision typically demand more
processing power. In the sphere of self-driving automobiles, engineers utilize abstract simula-
tion models [26,57], rigid-body simulations [41,71], and soft-body simulations [21,52] among
others.

Basic simulation models, such as MATLAB and Simulink models, as well as abstract driving
scenarios [3], have been deployed primarily for model-in-the-loop simulations, benchmarking
of trajectory planners, and hardware/software co-design. They target largely non-real-time
operations and lack photorealism, limiting their utility for evaluating SDC systems.

Rigid-body simulations approach the physics of bodies by representing things as inde-
formable bodies [1]. Rigid-body simulations adopt a very coarse approximation of reality and
can only replicate fundamental object movements and rotations. Therefore, rigid-body simula-
tions cannot correctly model actual and crucial circumstances (i.e., vehicle accidents, inertia),
even when integrated with rendering engines to generate photorealistic simulations [20].

Soft-body simulations are better than rigid-body simulations and are capable of simulating
a vast array of simulation scenarios in addition to simple body movements and rotations. Ac-
cording to Dalboni and Soldati [17], soft-body simulations are capable of simulating body de-
formations, anisotropic mass distributions, and inertia, which are crucial in many CPS fields.
Compared to rigid-body simulations, soft-body simulations are more suitable for replicating
safety-critical driving conditions [21], and they may be paired with strong rendering engines
to achieve photorealism (i.e., [5]).

There are numerous simulators for self-driving cars, as shown and compared in section
2.1.4 but for our research, we focused on using the BeamNG simulator, which is the soft-body
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simulation widely used in academic research, as seen in the previous research on simulation-
based testing for SDCs [8, 9, 21, 35].In addition, we use the CARLA simulator, which is a
rigid-body simulation used more commonly in the industry than in academic research. We
also compare the application of soft versus rigid bodies in simulation-based testing for SDCs.

This section provides a brief analysis BeamNG and CARLA simulators and compares them.

2.1.1 BeamNG

BeamNG.tech provides driving simulation software, virtual tests for the development and test-
ing of autonomous vehicles, advanced driver-assistance systems (ADAS) and vehicle dynam-
ics. This is possible thanks to our sensor suite, which is typical of autonomous driving and
comprises. Each sensor can be customized to meet the individual needs of different applica-
tions [5].

The official open-source Python interface for BeamNG.tech is known as BeamNGpy1. The
library uses a scenario-based strategy: The user configures vehicles and specifies the sensor
configuration in a script. This makes it easier to collect data for learning-based systems and
enables the validation and verification of autonomous driving software, such as BeamNG [5].

BeamNG Sensors

• Camera:
Classic camera sensor to incorporate a variety of extra data. This enables it to get the
maximum amount of information from the simulation. In addition to RGB photos, it gives
pixel-perfect depth, object classes, and object instance information. It is also simply
configurable in terms of traditional camera settings, such as field of view and quality,
and may be fitted to any portion of your car to match your technology demonstration.

• Lidar:
Lidar sensor implementation mimics the behaviour of real Lidar sensors. As a rotational
Lidar, it generates a point cloud by relying on ray tracing. Just like any of our sensors,
it is highly customizable and generates a perfect scan of the environment. Soon it will
also provide ground truths along the generated point clouds, accelerating your research
and product development.as illustrated in Figure 2.1

• IMU:
IMU sensor captures all of the driving dynamics of the agent. While the other sensors
provide data for intelligent decision-making, the IMU sensor is designed to account for
the passenger’s comfort. The successful deployment of non-emergency systems requires
a steady driving style. Because our simulation generates precise vehicle dynamics, the
IMU sensor provides the means to develop a product that takes the customer into ac-
count.

• Ultrasonic Sensor:
Based on the simulation engine’s graphical data, a special algorithm is developed to
simulate the behaviour of actual ultrasonic sensors. The ultrasonic sensor is an integral
part of our sensor suite since it is a standard component of any contemporary car.

1https://beamng.tech/
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Figure 2.1: Lidar Sensor [5]

• Damage Sensor:
The damaged sensor is exclusive to BeamNG.tech [5] and gives extensive information on
the condition of the vehicle. With this sensor, it is possible to evaluate not only the con-
dition of the outside vehicle components but also the condition of the individual engine
components. Despite missing a real-world equivalent, this sensor is a vital instrument
for evaluating the quality of any autonomous driving helper without endangering any
real-world hardware. as illustrated in Figure 2.2

As deformable and breakable objects and fluids can be simulated using soft-body simula-
tions, a variety of simulation scenarios can be modelled using these simulations. To be more
precise, the finite element method (FEM) is the primary method for simulating solid bodies,
while the finite volume method (FVM) and the finite difference method (FDM) are the primary
methods for simulating fluids [43]. BeamNG makes use of soft-body simulations [10].

2.1.2 CARLA

CARLA [19] is an open-source simulator that democratizes autonomous driving research and
allows everyone to extend and use this simulator. The simulator has been built for flexibility
and realism in rendering and physics simulation. It is implemented as an open-source layer
over the Unreal Engine [61]. It simulates a dynamic world and offers an interface for connect-
ing the world with an agent that engages with it. It functions as a modular and adaptable tool
with a strong API to support ADAS system training and validation. As a result, CARLA works
to satisfy the needs of different ADAS use cases, such as developing perception algorithms or
teaching driving rules. CARLA is built from the ground up using the Unreal Engine, and it
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Figure 2.2: Damage Sensor [5]

makes use of the OpenDRIVE 2standard to define roads and urban settings. Users can cus-
tomize the CARLA API, which gives them simulation control. It is based on Python and C++
and is constantly expanding alongside the project, which is an ecosystem of projects created
by the community around the primary platform [34].

CARLA Environment is built as a server-client system, where the server runs the sim-
ulation and renders the scene, to support this functionality. The interaction between the
autonomous agent and the server via sockets is carried out by the client API, which is imple-
mented in Python. The client requests commands and meta-commands from the server, and
the server responds with a sensor reading. To generate realistic results, the server should
run with a dedicated GPU. The client-side consists of some client modules that control the
logic of agents appearing in the scene, including pedestrians, vehicles, bicycles, and motor-
cycles. [19].

Rigid-body simulations approximate the physics of static bodies (or entities), i.e., by mod-
elling. Basic simulation models implement fundamental signals, but they typically target non-
real-time executions and are not very photorealistic. As a result, they are used for model-in-
the-loop simulations and hardware/software co-design [10].

Every model is meticulously created to balance visual quality and rendering performance.
We use low-weight geometric models and textures while maintaining visual authenticity by
meticulously designing the materials and lighting [19].

CARLA proposes a safety assurance module based on the RSS library. The responsibility of
this module is to put holds on the vehicle controls based on the sensor information. In other
words, the RSS defines various situations based on sensor data and then determines a proper
response according to safety checks. A situation describes the state of the ego vehicle in
relation to an element of the environment. Leveraging the OpenDrive signals enables the RSS

2https://www.asam.net/standards/detail/opendrive/
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module to take different road segments into consideration, which helps to check the priority
and safety at junctions [34].

2.1.3 Compare Simulator

Table 2.1: Compare Simulator CARLA vs BeamNG

Attribute of com-
parison

CARLA BeamNG

Open Source CARLA is a fully open-source simulator
that democratizes the autonomous driv-
ing research area [34]

BeamNG is a mix of commercial and
open-source licenses. [5]

Free Yes No

Commercial No Yes

3D Rendering En-
gine

CARLA simulator is based on Unreal En-
gine that generates new maps by auto-
matically adding stop signs based on the
OpenDRIVE technology

The BeamNG simulator is built upon the
Torque 3D engine, which serves as a
backbone for a sandbox vehicle simulator

VR compatible Yes No

Pedestrian Simu-
lation

Yes No

Supported
Weather

Yes No

Recommended
System

4GB GPU, 8GB RAM, 50-80GB Radeon HD 7750 / Nvidia GeForce GTX
550 Ti, 8GB RAM, 15GB

Supported OS Windows, Linux Windows, Linux(recently released experi-
mental version)

API support Python,C++ Python

Architecture Consists of a scalable client-server archi-
tecture.

Focuses on ground-based road-vehicle
simulation.

Used Industry Academia,Industry

model-based Rigid-body [34]. Soft-body [10]

Usage in Au-
tonomous systems

Autonmous Driving Research, Synthetic
Data Generation for Computer Vision
and Machine Learning (Reinforcement
Learnig )

Autonmous Driving Research, Synthetic
Data Generation for Computer Vision
and Machine Learning (Reinforcement
Learnig)

2.1.4 Other simulators for SDCs

As outlined in the literature by Kaur et al. [34], we discuss additional potential simulators in
this section, with a specific focus on the CARLA and BeamNG simulator comparison.
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Matlab/simulink

Automated Driving ToolboxTM3, which is a collection of tools from MATLAB/Simulink4,
makes it easier to design, simulate, and test automated and driver-assist systems. One of its
key features is that High-Definition (HD) live map data and OpenDRIVE® road networks can
be imported into MATLAB and used for various design and testing purposes. Users can also
model various sensors and create 3D scenarios that are photorealistic. Because Simulink’s
logic blocks are presented in an understandable manner, MATLAB/Simulink is one of the best
options for testing higher-level algorithms. It also has a quick plot function that makes it
simpler to analyze the results [34].

CarSim

CarSim [15]is a vehicle simulator commonly used by industry and academia [34]. The newest
version of CarSim supports moving objects and sensors that benefit simulations involving
ADAS and autonomous vehicles (AVs). CarSim specializes in vehicle dynamics simulations
because of its complete vehicle library and variety of vehicle parameters available to tune.
However, it has limited ability to build customized upper-level algorithms in an efficient way
[34].

Gazebo

Gazebo [36] is an open-source, scalable, flexible, and multi-robot 3D simulator. The physics,
rendering, and communication libraries are the three main libraries that Gazebo depends
on. First off, the physics library enables the user to specify the physical properties of the
simulated objects, such as mass, friction coefficient, velocity, inertia, etc., so that they behave
as closely to their real counterparts as possible. Although widely used, Gazebo is not the best
option for testing complete self-driving car systems due to the time and effort required to
create dynamic scenes [34].

LGSVL

LG Electronics America R&D Center (LGSVL) [54] is a multi-robot AV simulator. In order
to test the algorithms for autonomous vehicles, it suggests an unconventional solution. The
fact that it is integrated with some platforms makes it simple to test and validate the entire
system. The simulator was created using the Unity Game Engine and is open source [34].
Between the AD stack and the simulator backbone, LGSVL offers a variety of bridges for
message transmission.

High-quality simulation environments are provided by CARLA and LGSVL, which need a
GPU computing unit to operate at a reasonable performance and frame rate. However, LGSVL
lacks a built-in recorder, while CARLA does. The user can create a new map by manually im-
porting various components into the Unity game engine, which powers the LGSVL simulator.
Due to the numerous integrated automated features they support, LGSVL is most suitable for
end-to-end testing of the unique functionalities that self-driving cars offer, such as perception,
mapping, localization, and vehicle control, similar to CARLA [34].

3https://www.mathworks.com/products/automated-driving.html
4https://www.mathworks.com/products/simulink.html
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2.2 Simulation-based testing

This section explores the literature on, (i) Simulation-based testing of SDCs, (ii) Simulation-
based Testing of CPS in Virtual Environments (iii) VR in cyber-physical systems

2.2.1 Simulation-based testing of SDCs

Autonomous driving has the potential to significantly reduce the number of collisions, how-
ever, recently reported fatal collisions using self-driving cars reveal that this vital objective
has not yet been reached [21]. This necessitates more thorough testing of the software that
governs self-driving cars, which is problematic because it calls for creating complex driving
scenarios. We suggest testing self-driving car software primarily in car crash situations, which
are the most crucial kind of tests [21].

Virtual tests, which assess CPS like self-driving vehicle software in computer simula-
tions, are more efficient and secure than real-world field operations tests. However, it is
time-consuming and challenging to create adequate test cases. Gambi et al. [24] create
challenging virtual scenarios for testing self-driving car software automatically by combining
procedural content generation, a method commonly used in contemporary video games, and
search-based testing, a method proven to be successful in many domains.

Gambi et al. [24] developed a tool called AsFault to automatically generate driving scenar-
ios for SDC testing. AsFault generates virtual tests by procedurally generating road networks
within a fixed-size map of configurable size to fit with the capabilities of current simulation
software [23].

The cost of running numerous test-driving scenarios (test cases) that interact with sim-
ulation engines makes regression testing for self-driving cars (SDCs) particularly expensive.
Birchler et al. [10] introduced two black-box test case prioritization strategies, SO-SDC-
Prioritizer and MO-SDC-Prioritizer, to increase the cost-effectiveness of regression testing.
In both of these methods, the test cases are prioritized using genetic algorithms , which are
calculated using the suggested road features and test execution.

To specifically drive the ego-vehicle (the simulated automobile controlled by the SDC soft-
ware under test) to deviate from the centre of the lane, AsFault uses a genetic algorithm to
iteratively refine virtual road networks. A driving simulator called BeamNG [5] can create
synthetic, photorealistic photographs of roads, which is how the virtual roads are produced.
These qualities led to BeamNG [5] being utilized as the primary simulation platform for the
2022 SBST tool competition [49]. Advanced image processing, deep learning, or machine
learning techniques are used by lane-keeping systems to continuously track the striped and
solid lane markings of the road ahead and to activate the necessary control mechanisms (such
as steering, braking, and speeding) to keep the car at the proper lane [10].

SDCs Safety and Fault Tolerance

Stolte et al. [58] presents a taxonomy that enables the definition of the fault tolerance regimes
fail-operational, fail-degraded, and fail-safe in the context of SDCs. A steer-by-wire system,
which is a crucial component of future automated vehicles and is used to demonstrate the
taxonomy, is an example of a system that is highly safety-critical in general. When using a
steer-by-wire system, the desired steering angle is determined and entirely managed by an
electronic system.
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According to SAE J3016 [11], a taxonomy for an SDC that is SAE Level 4 compliant.
Since these SDCs determine how the vehicle will behave, they are extremely important for
vehicle safety. The taxonomy and its derived definitions are consistent with the terms fail-
operational, fail-degraded, and fail-safe as defined in the technical report ISO/TR 4804 [32].
However, unlike ISO/TR 4804, which is only applicable to automated driving systems at the
vehicle level, our taxonomy permits applications at arbitrary system levels.

2.2.2 Simulation-based Testing of CPS in Virtual Environ-

ments

To effectively and efficiently test cyber-physical systems (CPS) several simulation environ-
ments have been developed, and these environments are nowadays critical for developers at
various stages of the design and validation of CPS. Testing CPS in the real world is not only
expensive but also dangerous, and has already caused fatalities [25].

CPS are systems that operate simultaneously in the physical and digital worlds [39]. Au-
tonomous vehicles, including cars and trucks, have frequently made headlines in the auto-
motive industry. Military, surveillance and shipping applications for drone-based systems are
being developed. Additionally, CPSs are becoming more widespread in a variety of industries
and research fields as a result of recent developments in artificial intelligence (AI) and the
growing importance of the Internet of Things (IoT) [51].

Dohyeon et al. [67] compare six self-driving simulation platforms with varying levels of
visual and motion input, ranging from a screen-based in-lab simulator to a mixed-reality on-
road simulator. The simultaneous use of natural visual and motion experiences also increased
the sense of presence.

2.2.3 Simulation-based Testing of Lane Keeping Systems

Lane Keeping Systems(LKS) are one of the fundamental features for testing autonomous driv-
ing. Simulation-based testing requires the creation of pertinent testing scenarios and the
concretization of their executions [40]. Birchler er al. [8] lane-keeping system as the test
subject for evaluating the driving agent and driving the car by computing an ideal driving tra-
jectory to maintain lane centre while driving within a configurable speed limit. In accordance
with current research on automated testing of LKS [49] [22], we consider scenarios that take
place on a sunny day on single, flat roads surrounded by plain green grass. Consequently,
tests take the form of the following driving tasks: driving without going off the lane from a
given starting position, i.e., the beginning of a road, to a target position, i.e., the end of that
road.

SDC-Alabaster relies on the open-source testing infrastructure developed for the Search-
Based Software Testing (SBST) workshop’s CPS testing competition [22]. This infrastructure
can automatically implement executable simulations from road spines, run them, and collect
their results (i.e., pass/fail). This infrastructure was chosen for two primary reasons: (1) It
employs the BeamNG.tech [15] simulator; consequently, it can conduct physically accurate
and photorealistic driving simulations. (2) It has been used to benchmark a number of au-
tomatic test generators (see [49] [22]); therefore, it permits us to examine the generality of
SDC-Alabaster. Birchler er al. [10] To evaluate the criticality of generated test cases, the road
networks are instantiated in a driving simulation in which the ego-car is instructed to reach a
destination by following an AsFault-selected navigation route. During the simulation, AsFault
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traces the ego-position cars at regular intervals in order to identify Out of Bound Episodes
(OBEs), i.e., lane departures.

Birchler er al. [8] on paper SDC-Scissor uses machine learning (ML) to identify SDC tests
that are unlikely to detect faults in the SDC software under test, allowing testers to skip
their execution and dramatically increasing the cost-effectiveness of simulation-based testing
of SDC’s software. In addition, SDC-Scissor successfully selected unsafe test cases across
various driving styles and drastically reduced the execution time to dedicate to executing safe
tests in comparison to the random baseline approachcitebirchler2022cost. The classification
F1 score for SDC-Scissor was as high as 96% [8].

2.2.4 VR in Cyber-Physical Systems

The Virtual Reality Integrated Development Environment (VRIDE) for CPS could be advanta-
geous to developers in a number of ways, including early and frequent design testing, collabo-
ration with non-technical users, and bringing in developers from other fields to work alongside
software developers on CPS development [46].

Although VR technology is most commonly used for gaming, it is also being used more and
more in various robotics applications [62]. The Head Mounted Display (HMD) that is included
with VR devices enables the user to become completely immersed in a virtual environment.
The user can perform actions and manipulation tasks with a pair of hand controllers that
can be used to control CPS in the real world. Additionally, the majority of commercial VR
devices utilize potent gaming engines like Unreal and Unity that enable users to create a
variety of realistic scenarios, intelligent characters, and objects with realistic dynamics and
kinematics [62].

VR-based simulators are used to evaluate users’ behaviour and subjective assessment in
various scenarios. Simulators have the advantage of continually recreating the same compli-
cated and risky scenarios without putting anyone at risk. Simulators frequently use motion
platforms to provide motion cues and enhance a sense of motion. Motion platforms are the
mechanism that creates the feeling of being in a real motion environment. But due to the
constrained motion workspace, it is challenging to mimic realistic motion feedback [70].

2.2.5 VR and User perception

Yildirim et al. [68] demonstrate how virtual reality (VR) is a useful tool for visualizing how
future mobility concepts could be implemented in the real world. A subsequent user study in-
vestigated how VR can affect attitudes and perceptions regarding such mobility concepts and
technologies. Their research indicates that virtual reality is an effective way to quickly and
intuitively explain complex ideas, and it may also play a role in broadening user perspectives.

2.3 Thesis Terminology

To avoid confusion in terminology, it is essential to note that throughout the remainder of
the thesis, simulation-based test cases for Self-driving car(SDCs) are generated by SDC-
Alabaster as test cases. Test cases are composed of virtual roads composed of sequences
of multiple road segments. Formally, road segments refers to (parametric) portions of test
cases’ roads; therefore, they can be straight segments (no curvature), left turns (positive
curvature), or right turns (negative curvature).
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When a test case is executed in the CARLA or BeamNG simulators, it is called test sce-
nario. The test scenario includes static obstacles such as road bumps, trees, and cylinders,
as well as dynamic obstacles such as other vehicles, traffic, and pedestrians.

Test scenarios that have been executed and evaluated in the simulation are referred to as
executed test cases. Then, if a test is passed successfully, we refer to it as a PASS test, and
if it fails, revealing potential issues with the system being tested, we refer to it as a FAIL test.

Regarding the experiments to answer RQ3 and RQ4 in section 5, we will discuss safety
perception, which refers to how participants evaluate the test scenarios in terms of their
safety. Also, we discuss the level of realism, which refers to how realistically the exper-
iment participants relate to the real world. Participants are referring to candidates who
were recruited for the experiment to assess safety perception and the level of realism of test
scenarios.

In the experiment, we utilize Virtual reality headsets, also known as VR, to visualize test
scenarios so that the user feels as though they are in the actual SDCs. To check how safety
perception and realism are affected by different view angles of the car, we adjust the view to
Outside view, which is the view of the car from the back top angle, and Driver’s view, which
is the view as a driver would experience it in real life.

In the experiment, we also provided participants with test scenarios in which they could
interact with the vehicle. Interaction is an evaluation of how safe they felt on a particular
road segment. For assigning the safety perception of the test scenario, participants can re-
spond to the survey using the following metrics: Very safe and Safe when they feel extremely
safe or safe by a significant margin, respectively. Neutral when participants do not feel safe
or secure. Unsafe and Very unsafe when the test scenario includes SDC’s dangers or is
extremely dangerous, respectively.



Chapter 3

Approach

In this chapter, we aim to address the technical research questions RQ1 and RQ2. To answer
RQ1, which deals with test generation automation with various environmental conditions,
we developed SDC-Alabaster. A tool that extends SDC-Scissor [8] to enable automated test
generation and virtual reality (RQ2) to assess the safety level of SDC test scenarios from a
human’s perspective.

• Technological question - RQ1: How far can we automate test cases to generate a
variety of scenarios with various environmental conditions and static and dynamic object
placement, and safe and unsafe SDCs tests?

• Technological question - RQ2: To what extent is it possible to integrate simulator
scenarios into virtual reality (VR)?

First, we overview SDC-Alabaster’s architecture and explain its components in more depth
(Section 3.1). Then, in Section 3.2, we proceed with test case generation for SDCs in VR. To
show how the generated tests are used, we explain the general workflow of SDC-Alabaster in
Section 3.3. In Section 3.4, we explain in detail how to use SDC-Alabaster as a tool to follow
the workflow. Finally, a summary of technical aspects that address RQ1 and RQ2 is provided
in Section 3.5.

3.1 SDC-Alabaster Architecture Overview

SDC-Alabaster is based on SDC-Scissor and implements additional components (see Fig-
ure 3.1). Furthermore, the tool is dependent on external components, such as simulators
and VR-related hardware. We provide an architecture overview of SDC-Alabaster with all its
components and how they interact with their input and output as illustrated in Table 3.1.

3.1.1 Internal Components

SDC-Alabaster builds upon SDC-Scissor by extending it with additional independent compo-
nents as shown in Figure 3.1. Specifically, SDC-Alabaster implements (i) a Human Component
Interactor (HCI), (ii) an HCI Interpreter, and (iii) an HCI Actuator. Those components interact
with each other over APIs by giving inputs and outputs. Below, we elaborate on the individual
components in more depth:
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Figure 3.1: SDC-Alabaster Architecture Overview

Table 3.1: Overview of components’ input and output

Component Input Output

HCI User interactions Input representation
HCI Interpreter Input representation Generic command representation for simulators
HCI Actuator Generic command Specific command for BeamNG or CARLA
Simulators Specific simulator command Video output
Virtual Reality Video output Immersive video output for VR headsets

Human Component Interactor (HCI). This component is the main component, which a
user interacts with. It takes as input any user interaction from the keyboard and forwards it
toward the HCI Interpreter component. The next component, the HCI Interpreter, will further
process the interaction.

HCI Interpreter. The forwarded interaction from the HCI component is interpreted by
the HCI Interpreter and produces a generic command for the simulators. Since not all for-
warded interactions from the HCI components are valid (i.e., not supported keystrokes from
the keyboard), the HCI Interpreter only allows certain pre-defined interactions for the user.
We have to mention that due to technical limitations such as the fact that an AI is driving the
car a user can not specify the vehicle’s speed manually; for instance, the user is only allowed
to set the vehicle’s maximum speed with specific keystrokes on the keyboard. The component
analyzes the type of interaction and its values so that it can generate a generic command for
the simulators.
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HCI Actuator. The HCI Actuator gets as input a generic command for the simulators.
This component processes the generic abstract command and produces specific commands
for each simulator (i.e., BeamNG and CARLA) since the API for the simulators are different
and therefore require different implementations. The concrete simulators will be invoked with
the generated commands from this component.

3.1.2 External Components

Next to the internal components described in Section 3.1.1, SDC-Alabaster relies also on
external components, which were developed by third parties. They are represented as orange
and violet components in Figure 3.1. Concretely, SDC-Alabaster requires simulators, such as
BeamNG and CARLA as well as VR-related hardware to immerse the user into the simulator.

Simulators

As indicated in Figure 3.1 with orange components, SDC-Alabaster relies on simulators. We
use two simulators, namely BeamNG, and CARLA since they implement fundamentally differ-
ent physics behavior.

BeamNG. We use BeamNG since this simulator is represented in recent years in academic
publications and workshops on SDC testing [7,8,10,22,35,49]. The BeamNG simulator comes
along with a soft-body physics engine. This type of physics engine allows the simulation of
body deformation and therefore more realistic simulations. On the other hand, BeamNG does
not allow headless simulations which means that all simulations must be rendered. More de-
tails are already elaborated in Section 2.1.1. However, BeamNG provides a Python API called
beamngpy [4] so that SDC-Alabaster can interact with the simulator and send the actions.

CARLA. Another widely used simulator in industry and academia is CARLA [20,28,30,47,
71, 72]. The differences between CARLA and BeamNG are twofold. On one hand, CARLA
comes with a rigid-body physics engine, which works differently than the soft-body physics
engine of BeamNG. On the other hand, the test specifications and concepts of these simula-
tors are different. For more details, refer to Section 2.1.2 and Section 2.1.1. Despite those
differences, CARLA also provides a Python API [12] to manage the simulations. This allows
easy integration into SDC-Alabaster since all components are written in Python.

Virtual Reality

Another external component is Virtual Reality (VR), which is the framed part in Figure 3.1.
This component is mainly about VR hardware such as VR headsets to immerse users into
the simulation environment. We implemented SDC-Alabaster so that it works with two VR
technologies namely (i) HTC Vive Pro 2, and (ii) Oculus Quest 2.

HTC Vive Pro 2. The VR headset HTC Vive Pro 2 (Figure 3.2a) immerses the user in a vir-
tual environment. HTC Vive Pro 2 has no onboard GPU for simulation but a wired connection
to an external device with a dedicated GPU.
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(a) HTC Vive Pro 2 [29] (b) Oculus Quest 2

Figure 3.2: Virtual Reality (VR) technologies

Table 3.2: Feature overview of HTC Vive Pro 2 and Oculus Quest 2

Feature HTC Vive Pro 2 Oculus Quest 2

Onboard GPU ✘ ✔

Wired connection ✔ ✔

Wireless connection ✘ ✔

Peripherals ✔ ✔

Android OS ✘ ✔

Windows OS ✔ ✘

Oculus Quest 2. Another popular VR technology is the Oculus Quest 2 (Figure 3.2b). In
contrast to HTC Vive Pro 2, the Oculus Quest 2 is able to operate wired and wireless. For the
wireless operation of the device, Oculus Quest 2 has an onboard GPU for rendering. However,
we suggest using a wired connection to an external, more powerful GPU for better simulation
performances.

Both VR technologies come with different features, which enable SDC-Alabaster to be used
in different use cases. Depending on the user’s needs, the appropriate VR technology can be
selected. An overview of the features provided by HTC Vive Pro 2 and Oculus Quest 2 is
shown in Table 3.2.

3.2 SDC-Alabaster Test Case Scenarios Genera-

tion and Selection

SDC-Alabaster automatically generates a variety of test scenarios for BeamNG and CARLA us-
ing the test generators (RQ1). As already mentioned, SDC-Alabaster is based on SDC-Scissor
and applies the same concept for specifying tests for SDCs. Specifically, a test is simply spec-
ified in a JSON file by a sequence of XY-coordinates, which are referred to as road points. The
actual road in the virtual environments is the result of interpolating the road points as illus-
trated in Figure 3.3. Creating the tests manually by testers is not feasible since specifying the
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Figure 3.3: Road points as SDC test specication

Figure 3.4: BeamNG with static objects

sequences of road points can be a cumbersome task. To overcome this issue, SDC-Alabaster
leverages state-of-the-art test generators for SDCs [13,14,22,31,49] that automatically gen-
erate those road points. SDC-Alabaster integrated these tools into its framework and make
them applicable for BeamNG and CARLA although, their implementations need to be adapted
for each simulator separately since CARLA and BeamNG have different APIs. The following
sections provide more details of the implementation of the test generators into SDC-Scissor
and eventually into SDC-Alabaster. Furthermore, we will elaborate on the technical use of VR
with the different simulators for immersing the users into the virtual environments (RQ2).

3.2.1 BeamNG

The test generators from the SBST [22, 49] tool competition for CPS are developed by us-
ing their own platform 1 in combination with the BeamNG simulator. Since SDC-Alabaster’s
test specification is based on the SBST tool competition platform, there is a straightforward

1https://github.com/se2p/tool-competition-av

https://github.com/se2p/tool-competition-av
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(a) Top view with angle α (b) Side view with angle β

Figure 3.5: View angles in VR with vorpX

integration of the test generators into our framework. More challenging is to enable the im-
mersion of the user into the virtual environment of BeamNG with VR technologies and the
integration of static and dynamic objects into the virtual environment.

With SDC-Alabaster, the user can modify the test scenes by adding different types of ob-
jects (i.e., static and dynamic). When using SDC-Alabaster with the BeamNG simulator, the
user has the option to add trees, speed bumps, and delimiter to the road as illustrated in Fig-
ure 3.4. These objects can be placed by specifying the parameter in the test configuration (see
Listing 3.2). The integration of objects into the virtual environment should give a different
perception of the scenario to the user who is immersed in the simulation scenario.

BeamNG has not a built-in solution for using the simulator with VR technologies, thus
third-party tools are required to bridge the gap. We used the VR driver vorpX 2, a specialized
tool to transform any visual output to the screen to a compatible input for VR headsets so that
it gives to a certain extent an immersive feeling for the user. As illustrated in Figure 3.5, the
vorpX software gives a broader view angle when wearing a VR headset. The user can move
the head and can explore the virtual environment according to its head movement. However,
the view is still limited and does not provide a 360° round view for the user.

3.2.2 CARLA

In the case of the CARLA simulator, there is no difference in the use of the test generators.
However, tests generated are processed differently compared to the case of the BeamNG
simulator since CARLA defines the virtual environment slightly differently. For instance, an
automatically generated test contains as mentioned before a sequence of XY-coordinates spec-
ifying the road points. The CARLA simulator, however, does not need all the road points de-
fined in the test. Instead, SDC-Alabaster segments the road definition and only uses the start
and end points of the segments to declare the beginning and end of the scenario in CARLA.

The integration of additional objects (static and dynamic) into the CARLA simulator al-
lows a more comprehensive understanding of the level of safety perception of the user. With

2https://vorpx.com/

https://vorpx.com/
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Figure 3.6: CARLA with static and dynamic objects

CARLA, the SDC-Alabaster framework can add easily objects to the environment. This mod-
ification of the environment can even be done at runtime, i.e., during the test execution. To
enable the immersion of the user and manual safety evaluation of the scenario SDC-Alabaster
adapts the test specifications for CARLA automatically and uses VR technology to immerse
the user into CARLA’s virtual environment.

An extra feature of CARLA enables the use of VR for its simulations. SDC-Alabaster utilizes
the HARPLab 3 extension project for CARLA to enable the VR integration. The HARPLab
project contributes to the development of the VR environment. When you launch the CARLA
application, passing the -VR flag will put the simulator into VR mode. VR mode is in its
experimental phase, so it can only be used for one Carla map, and integrating VR controllers
requires modifying the simulator’s core and cannot be done through the client API. Details
information on setup can be found on the dedicated repository of HARPLab 4.

3.3 SDC-Alabaster Workflow

The general workflow of SDC-Alabaster is illustrated in Figure 3.7. First, the user invokes
the test generation process of SDC-Alabaster by choosing a state-of-the-art test generator for
SDCs. Secondly, by selecting a simulator, the generated tests are processed according to the
chosen simulators. In the last step, the user immerses himself in the virtual environment with
VR technology and labels the tests as safe or unsafe.

Test generation. The first step of the general workflow of SDC-Alabaster is to automat-
ically generate test cases with state-of-the-art test generators for SDCs. All test generators
that SDC-Alabaster uses come from the SBST [22,49] CPS tool competitions. SDC-Alabaster

3https://github.com/HARPLab/DReyeVR
4https://github.com/HARPLab/DReyeVR/blob/main/Docs/SetupVR.md

https://github.com/HARPLab/DReyeVR
https://github.com/HARPLab/DReyeVR/blob/main/Docs/SetupVR.md
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Figure 3.7: SDC-Alabaster’s workflow overview

persists all generated tests as JSON files containing the road specifications which will be
further processed in the next step for the simulation environments of BeamNG or CARLA.

Simulation. Depending on the actual simulator that will be used, SDC-Alabaster trans-
lates the road specifications to the simulator-specific environment. As input, SDC-Alabaster
takes the road specifications obtained from the previous phase, and an option specifies which
simulator (BeamNG or CARLA) should be used for running the tests. Furthermore, the simu-
lation process is run with VR so that the users can immerse themselves in the environment.

Labeling. The last phase of the workflow is the actual labelling of the tests depending
on the user’s level of safety perception. On a Likert scale, the user classifies the test into
different levels of safety. Furthermore, any interaction a user does (i.e., lower the maximum
speed of the SDC) will be logged for further analysis after the test execution.

In summary, SDC-Alabaster will produce a set of tests that are labelled based on the user’s
perception of safety. These data will be used for further analysis and future research on
investigating safety-critical scenarios of SDC test cases in virtual environments.

3.4 SDC-Alabaster Tool

SDC-Alabaster uses APIs written in Python only, and therefore the tool itself is also written
in Python. Access to SDC-Alabaster is granted by applying to the owner of the repository 5

on GitHub. This section provides low-level guidance on how to install and use SDC-Alabaster.
Furthermore, screenshots of the tool’s interface in Figure 3.8 show precisely what input SDC-
Alabaster for different use cases need.

5https://github.com/ChristianBirchler/sdc-alabaster

https://github.com/ChristianBirchler/sdc-alabaster
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Requirements. In order to use SDC-Alabaster, some requirements need to be fulfilled.
The following software need to be installed first:

• Windows 10 6

• BeamNG.tech 7 v0.24

• CARLA 8 v0.9.13

• Unreal Engine 9 v4.26

• Visual Studio 10 v2019

• Python 3.9 11

• Git 12

• Poetry 13

We developed and tested SDC-Alabaster with the mentioned versions of the requirements.
There is no guarantee that newer versions of the requirements are compatible.

Installation. The installation of SDC-Alabaster consists of two steps; (i) cloning the repos-
itory, and (ii) installing the necessary dependencies. Listing 3.1 illustrates the commands to
install SDC-Alabaster.

~$ git clone https://github.com/ChristianBirchler/sdc-alabaster.git

~$ cd sdc-alabaster

~/sdc-alabaster$ poetry install

Listing 3.1: Cloning and installing SDC-Alabaster

6https://microsoft.com/en-us/software-download/windows10ISO
7https://beamng.tech
8https://carla.org/
9https://unrealengine.com/en-US/ue-on-github

10https://visualstudio.microsoft.com/
11https://python.org/downloads/release/python-3915/
12https://git-scm.com/
13https://python-poetry.org/

https://microsoft.com/en-us/software-download/windows10ISO
https://beamng.tech
https://carla.org/
https://unrealengine.com/en-US/ue-on-github
https://visualstudio.microsoft.com/
https://python.org/downloads/release/python-3915/
https://git-scm.com/
https://python-poetry.org/
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Generation and labelling of test cases with YAML file. All the command line options
can also be specified in a dedicated configuration file. Listing 3.2, represents an example
YAML file that is used to configure the execution.

1 command: ’label-tests’

2 options:

3 home: ’/path/to/beamng/executable’

4 user: ’/path/to/beamng/user/folder’

5 tests: ’destination’

6 rf: 1.5

7 oob: 0.5

8 max_speed: 50

9 interrupt: true

10 obstacles: false

11 bump_dist: null

12 delineator_dist: null

13 tree_dist: null

14 field_of_view: 120

Listing 3.2: Example YAML configuration file

SDC-Alabaster reads all the configs directly from the file as illustrated in Listing 3.3. By
enabling the -c flag, a concrete configuration file can be used by SDC-Alabaster.

~/sdc-alabaster$ poetry run sdc-alabaster -c file.yml

Listing 3.3: SDC-Alabaster with YAML configuration file

GUI to generate test cases. SDC-Alabaster can generate test cases according to param-
eters, i.e., the test generator and the number of tests that need to be specified. A Graphical
User Interface (GUI) helps the user to enter the parameter (see Figure 3.8a). For example,
the GUI for generating test cases can be launched by running the command in Listing 3.4.

~/sdc-alabaster$ poetry run ./gui/generate-tests.py

Listing 3.4: GUI for generating test cases

GUI to label test cases with BeamNG. The labelling process of SDC-Alabaster on
BeamNG can also be configured over a GUI (see Figure 3.8b). As demonstrated in Listing 3.5,
a separate script starts the GUI so that the tests execute with BeamNG.
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~/sdc-alabaster$ poetry run ./gui/label-tests.py

Listing 3.5: Label test cases with BeamNG

GUI to label test cases with CARLA. The same labelling process can also be performed
with the CARLA simulator but with slightly different parameters, as shown in Figure 3.8c. For
that purpose, a script specific for CARLA is invoked as illustrated in Listing 3.6.

~/sdc-alabaster$ poetry run ./gui/label-tests-carla.py

Listing 3.6: Label test cases with CARLA

Run CARLA instance. The use of VR requires additional configuration of the CARLA
simulator. An additional -vr flag must be set on the command line (see Listing 3.7) so that
all VR-related rendering features are enabled. Since CARLA’s underlying physics behavior is
determined by Unreal Engine 4 14, a separate process must be run.

# -vr flag for to run on VR

~/sdc-alabaster$ ./CarlaUE4.exe -vr

Listing 3.7: Run CARLA instance

In summary, we developed SDC-Alabaster user-friendly by making the installation process
and the use of the tool as straightforward as possible by guiding by a GUI for each use case.
More detailed instructions for the tool can be found in the repository, and support is given
over the GitHub platform from the developers. We aim to actively maintain SDC-Alabaster to
enhance the research in the SDC domain.

3.5 Technical Aspects

In the context of human-based test assessment for SDCs, SDC-Alabaster focused on using VR
to immerse the users into the virtual environments for a more realistic evaluation of safety-
critical test scenarios. The following two research questions guided the development of SDC-
Alabaster:

• Technological question - RQ1: How far can we automate test cases to generate a
variety of scenarios with various environmental conditions and static and dynamic object
placement, and safe and unsafe SDCs tests?

• Technological question - RQ2: To what extent is it possible to integrate simulator
scenarios into virtual reality (VR)?

14https://unrealengine.com

https://unrealengine.com
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3.5.1 Technical Aspect of RQ1

SDC-Alabaster uses state-of-the-art test generators to generate a variety of road specifications
(i.e., sequences of XY-coordinates). In addition, SDC-Alabaster can generate different types
of objects to place into the virtual environments. However, the generation and placement of
these objects highly depend on the simulator in charge of running the test cases.

In the case of BeamNG, static objects can be placed explicitly into the virtual environment
by defining some placement parameters (i.e.,., XYZ-coordinates and rotation in quaternion).
When enabling BeamNG with SDC-Alabaster, the user has the option to place trees, delim-
iter of the road, and speed bumps in the center of the road. The use of dynamic objects
like pedestrians is not supported, but it is possible to introduce other vehicles next to the
virtual environment in BeamNG. However, due to the nature of the soft-body physics engine
of BeamNG, the interaction between the car and the objects (i.e., a crash) is more realistic
compared to simulators with static-physics engines such as CARLA, which do not simulate
the dynamic deformations of the objects as a result of an interaction. So far, SDC-Alabaster
supports only static objects when using the BeamNG simulator, whereas the CARLA simulator
supports both types of objects.

For the CARLA simulator, SDC-Alabaster has the option to add dynamic objects. How-
ever, running a test scenario in CARLA with additional static and dynamic objects requires
more computational overhead (e.g., running driver agents of other cars) compares to the
BeamNG simulation with SDC-Alabaster’ framework. Furthermore, the test execution with
CARLA takes more time than BeamNG due to the aforementioned computational overhead.
For executing a test with CARLA, the simulation needs around 200 seconds whereas BeamNG
requires only around 30 seconds. In contrast to the BeamNG simulator, when using CARLA,
the user has the possibility to change the environmental conditions at runtime (i.e., during
the test execution). Thus, using SDC-Alabaster with the CARLA simulator allows having more
complex contexts in the simulation environment. For instance, the vehicle can drive in a city
with many other cars and pedestrians, which is not possible yet with BeamNG.

3.5.2 Technical Aspect of RQ2

For both simulators (BeamNG and CARLA), SDC-Alabaster can translate to video output in
a VR-compatible format. However, the approaches differ in how the users are immersed in
the virtual environments. In the case of BeamNG, there is neither a built-in solution nor a
plugin for the simulator to make the simulator compatible with VR technologies. To overcome
this limitation, we used vorpX, a general-purpose video output to VR translator, for immersing
the user into the virtual environment. The vorpX tool is a third-party tool that simply makes
the video output compatible with VR but with the limitation that the user does not have a
full 360° immersive feeling. As reported in Figure 3.5, the view angle by using vorpX is
limited. On the other hand, the CARLA simulator does not depend on the vorpX tool. For
the specific use case to enable VR with CARLA there is an open-source extension project
HARPLab (see Section 3.2.2). This extension allows the user to have a full 360° immersion
into the virtual environment of the CARLA simulator. In summary, the VR support for both
simulators is limited. However, in the case of CARLA the simulator gives a better immersive
feeling whereas, for BeamNG, SDC-Alabaster has to make use of vorpX, a commercial third-
party tool for simple video output translation for VR without providing a 360° immersive view
of the virtual environment.
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(a) GUI for test generation with Frenetic [13]

(b) GUI for test labeling with BeamNG (c) GUI for test labeling with CARLA

Figure 3.8: SDC-Alabaster’s Graphical User Interface (GUI) for different use cases





Chapter 4

Methodology

In this thesis, we investigate how closely the SDC test case resembles real-world driving
scenarios, as well as how humans perceive the level of safety.

The first two challenges of this thesis (RQ1 and RQ2) are to implement SDC test scenarios
with a variety of objects (i.e., trees, cars, etc.), as well as to integrate simulator scenarios into
virtual reality, which is already discussed and addressed in Section 3.

We also investigate whether the SDC test case resembles real-world driving scenarios (RQ3

and RQ4) and human perception of safety test cases. Also, we investigate human perception
from different viewpoints (VR, outside viewpoint, drivers’ view) illustrated in Figures 4.1b,
4.1a, 4.1d, 4.1c and assess the safety from different viewpoints. In RQ3 we only study the test
scenario without any interaction, whereas in RQ4 human will have the possibility to interact
with the self-driving car.

In the following sections, we describe our study’s design and the steps we followed in
answering RQ3 and RQ4 .

4.1 Research questions

We designed experiments to answer our remaining research questions:

• RQ3 How closely does the SDC test case resemble a real-world driving scenario, and
what is the human perception of SDCs test failures/safety?
This research question addresses the main goal of the study, which is to find out how
closely SDC-generated test cases resemble real-world driving situations and how people
view SDC test failures and level of safety. We focused on this research question to
determine to what extent individuals perceive the test scenarios as safe or unsafe, so
we conducted an in-person controlled experiment with a survey to determine safety. No
interaction will occur with the car in this research question.

• RQ4 What is the human perception of SDC’s test failures/safety when humans can in-
teract with the car?
In the preceding research question, we focused on test failures and realism. In this
research question, we look at how people’s perceptions change with or without inter-
action. Important differences between RQ3 and RQ4 are that in RQ4 we examine how
humans perceive safety when interacting with a vehicle, as well as how they feel from
the previously described different perspectives.
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(a) BeamNG Simulator with Outside View (b) BeamNG Simulator with Inside View

(c) CARLA Simulator with Outside View (d) CARLA Simulator with Inside View

Figure 4.1: Participants with BeamNG and CARLA Simulator

4.2 Five steps of research methodology

Figure 4.2 depicts our research methodology for answering our research questions. We de-
scribe the research methodology from experiment setup to survey and log analysis.

1. Experiment setup: First, we set up the experiment by planning the overall process
and generating a dataset of test scenarios for unbiased sampling. We conducted a pilot
experiment with one participant who is a virtual reality expert researcher (age: 23; gen-
der: female). and research with VR, and refine the experiment based on their feedback.

2. Recruiting: After setting up the experiment, we recruited study participants. We used
various recruiting methods. We targeted dedicated mailing lists from different insti-
tutions and organizations (i.e., including non-computer science organizations) . In ad-
dition, physical and digital flyers were used to attract more diverse participants. We
recruited 41 for our experiment.

3. Pre-survey: Once we identified the participants, we sent them a pre-survey a day before
the experiment. The pre-survey provided a high-level introduction to our experiment
and a disclaimer clarifying that we will proceed with anonymizing data considering and
that virtual environment accidents can be experienced during the experiments. To un-
derstand participants’ backgrounds, we also collected demographic, driving, and VR
experience data.
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Figure 4.2: Overview of research approach

4. Experiment: In the experimentation phase, we gave a brief introduction to the study
and a detailed overview of the experiment. We executed various experiments with var-
ious perspectives (outside view, driver’s view, etc.) and collected feedback via survey
with Likert scale and qualitative inputs.

5. Analysis of survey and logs: We analyzed the survey and participant logs after the
experiment to answer questions RQ3 and RQ4.

The subsequent sections elaborate on each of the aforementioned steps.

4.3 Test case generation and dataset prepara-

tion

In relation to RQ3 and RQ4, we chose a test case dataset and a sampling strategy to select
three test cases for the experiment to determine whether SDC test cases are safe or unsafe.
The SDC-Alabaster generated test case contains the attributes listed in Table 4.1 i.e., a road
point is an array of coordinates of road points, and interpolated road points are the path the
vehicle has to take in the test case. We can see an example of a selected test case from
SDC-Alabaster in Listing 4.1. We applied probability sampling with a script to select three
test cases from a dataset of 1,000 test cases, which was used with both the CARLA and
BeamNG simulator test scenarios, as manual sampling can result in bias in dataset selection
and reduce sample bias. We used stratified random sampling1, in which test cases are divided

1https://www.investopedia.com/terms/stratified_random_sampling.asp

https://www.investopedia.com/terms/stratified_random_sampling.asp
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into smaller, non-overlapping groups. When sampling, it is possible to organize these groups
and then draw samples from each group separately.

1 {

2 "test_id": 0,

3 "test_outcome": "NOT_EXECUTED",

4 "predicted_test_outcome": null,

5 "test_duration": null,

6 "road_points": [

7 [

8 46.46775185638596,

9 75.47341331328971

10 ]...

11 ],

12 interpolated_road_points": [

13 [

14 46.467751856385966,

15 75.47341331328973

16 ]...

17 ],

18 "simulation_data": []

19 }

Listing 4.1: Selected test case

Table 4.1: Test Case

Attribute description Example

test_id Identification of the test case 0
test_outcome Results of the test execution NOT_EXECUTED
predicted_test_outcome prediction of the test execution null
test_duration Time taken to execute the test case null
road_points Coordinates of road points [[100,100]]
interpolated_road_points Driving Path Road Coordinates [[100,100]]
simulation_data sensor and simulation data after execution []

The test scenario generated by SDC-Alabaster contains roads, whereas in CARLA we use a
selection of maps. We divided the generated test case into multiple segments and set a car’s
destination until it reaches the generated test case’s final destination point.

4.4 Study Procedure, Material, and Test Case

Environmental setting

Through various channels, including flyers posted on university bulletin boards and email/on-
line chat platforms, we recruit participants. As summarized in Table 4.2, we recruited 41



4.4 Study Procedure, Material, and Test Case Environmental setting 35

Table 4.2: Summarizes participants (*Higher Professional education includes researchers,
professor)

Field of study or profession
Education level

Total
Higher Professional* Postdoc PhD Masters Bachelor

Computer Science 3 2 5 22 3 35
AI ethics / Political science - - 1 - - 1
Artificial Intelligence - - - 1 - 1
Biology - 1 - - - 1
Robotics - - 1 - - 1
Business administration - - - - 2 2

Total 3 3 7 23 5 41

participants selected entirely voluntarily, i.e., using a convenience sample primarily of re-
searchers and students from universities in Zurich (Zurich universities of applied sciences,
University of Zurich, and ETH Zurich) with diverse backgrounds and varying levels of educa-
tion.

As you can see in Figure 4.3, the majority of the participants were between the ages of 26
and 30. There were 10 women and 31 men in our study. To diversify the results, we will focus
on recruiting more participants from fields other than computer science after the completion
of the thesis.

Figure 4.3: Participants’ age distribution

Once interested participants contacted us via email, we sent them a link to book a time
slot for the experiment. A day before the experiment, we sent an email with location details,
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time, and a pre-survey to the participants. The following subsection will provide details on
the pre-survey.

4.4.1 Pre-survey

The pre-survey contains a high-level introduction to the topic and additional information such
as research group collaboration and EU Project COSMOS 2 affiliation, as well as an experi-
mental overview (approximate time, location of experiment, traveling expenses, and recom-
mendation to wear contact lenses). In addition, we described the type of simulator and virtual
reality headset used for the experiment. The pre-survey also contains a disclaimer regarding
confidentiality and anonymity of personal information, as well as a warning to be prepared for
fatalities or accidents.

Disclaimer:
All the information that you provide will be treated as confidential and will only be used
for research purposes. We will not disclose your personal information to third parties.
To simulate a real-world setting, some driving simulations may lead to fatalities or
accidents. Please consider your readiness for participating to these experiments.

Following the summary information and disclaimer section of the pre-survey, a yes/no ques-
tion was asked to agree to the disclaimer (Question: Would you accept the above terms and
continue participating in the study? ) As soon as they agreed, we moved on to the second
section of the survey, which consisted of collecting profile information and experimental ques-
tions.

Table 4.3: Pre-survey questions. (MC: Multiple Choice, OA: Open Answer)

Section ID Summarized Question Type # Responses

Background

Q1.1 Full Name? OA 41
Q1.2 Email? MC+OA 41
Q1.3 You are a(Student/Professional/Both Student and

Professional)?
MC+OA 41

Q1.4 Education (Currently doing / Completed) ? MC+OA 41
Q1.5 Age? MC 41
Q1.6 What is your field of study or profession ? MC+OA 41

Experimental Evaluation

Q2.1 Do you have any programming experience ? MC 41
Q2.2 Do you have any programming experience ? MC 41
Q2.3 Do you drive motorbikes, cars etc? MC+OA 41
Q2.4 What kind of vehicle do you drive ? MC+OA 41
Q2.5 How many years of driving experience do you have? MC+OA 41
Q2.6 How would you rate your driving skills? MC+OA 41
Q2.7 Have you ever use virtual reality(VR) headset (like

Oculus Quest, HTC VIVE, HoloLens etc)?
MC+OA 41

Q2.8 Have you ever been in a self-driving car? MC+OA 41
Q2.9 Do you play PC/Consoles Games ? MC+OA 41

We have grouped the questions reported in Table 4.3 into two topics: (i) Background, (ii)
Experimental Evaluation.

The Background questions provided us with demographic information, and the Experi-
mental Evaluation questions identified the expertise of participants on various aspects of the
experiment, such as testing, driving experience, and the application of virtual reality, which

2https://www.cosmos-devops.org/

https://www.cosmos-devops.org/
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helped us provide a guide to evaluating results and provided a background for safety and
realism in virtual self-driving cars.

4.4.2 Environmental setup

As mentioned in the preceding section, participants will receive an email containing the
study’s location. We conducted this research in a soundproofed, separate room. The config-
uration of the computing platform included a high-definition Graphical User Interface (GUI)
and two monitors (one for participants to view the non-VR test scenarios and the other for
organizers to execute the experiment), and for VR scenarios, we used in HTC Vive Pro 23, as
visualized in Figure 4.4 . After the execution of each test scenario, study participants were
able to provide feedback on the experiment in the survey we prepared to guide the whole
experiment.

Figure 4.4: Participant in experiment with VR(P25)

The overall experimental setup is illustrated in Figure 4.5, where participants received
a brief introduction to the experiment, including a high-level explanation of the study, an
explanation of main points such as simulator and VR, and an overview of the experiment.
After a brief introduction, we started with the BeamNG simulator’s on-screen test scenario
(scenarios without VR), which includes three test cases with warmup tasks (no evaluation is
required to familiarize oneself with the environment), consisting of observing test scenarios
without obstacles and test scenarios with obstacles. This preliminary activity was performed
to allow participants to get familiar with the technologies that will be used in the study. Then,
as shown in figure 4.6, participants had the possibility to use a VR with an outside view and
then a VR with a driver’s view.

3https://www.vive.com/us/product/vive-pro2/overview/

https://www.vive.com/us/product/vive-pro2/overview/
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After a BeamNG simulator, we start with CARLA test scenarios similar to BeamNG. We
start with on-screen test scenarios (scenarios without VR), which include three test cases
with warm-up tasks (no evaluation is required to familiarize oneself with the environment),
consisting of observing test scenarios without obstacles and test scenarios with obstacles.
The participants were then given the option of using a VR with an outside view and then a
VR with a driver’s view to see if their perception of safety changed with a different view from
the VR, as shown in Figure 4.7. In addition, experiment with additional test cases in which
participants use a keyboard to interact with the vehicle.

Figure 4.5: Overall study setup

4.4.3 Log & Survey data collection and analysis

For each test scenario, we collected data in a variety of formats, including logs generated by
the simulators BeamNG and CARLA and saved them as JSON files. These logs were stored
locally on the experiment’s computing infrastructure. In addition to the SDC-Alabaster also
classifies the test case as safe or unsafe, the framework also records the execution time in the
JSON log file.

You can view an example of BeamNG logs by following Listing 4.2. In the log example, one
can see the time of logging, the coordinates of the vehicle’s position, and sensor data such
as fuel, gear, and wheel speed, among others. On CARLA, the structure is slightly different,
where you can find timestamps and coordinates, details of weather conditions, and if the car
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crossed the line. On CARLA, the format is slightly different, with timestamps and coordinates,
weather conditions, and whether or not the car crossed the line. The example is found in the
following listing: 4.3.

After each test scenario has been executed, we collected feedback information through
surveys. We used the Likert scale to assess the level of safety of each scenario (What is the
perceived safety of Scenario 1? ) with options as in Table 4.4 and we asked them to justify
their response (Justify perceived safety of Scenario 1? ).

Table 4.4: Safety levels (Likert-scale intensity)

Safety options Example justification

Very Safe when the passengers feel it is a dangerous threat
Safe when the passengers feel it is a marginally less risk
Neutral when the passengers feel it is a normal situation
Unsafe when the passengers feel it is risk-free
Very Unsafe when passengers feel extremely safe in the car

1 {

2 "time": 0.03287863731384277,

3 "position": [

4 49.1695671081543,

5 77.75309753417969,

6 -27.797107696533203

7 ],

8 "sensors": {

9 "_data": {

10 "tcs": 0,

11 "fuel": 0.999969815320138,

12 "gear": 1,

13 "wheelspeed": 0.00015000228758618706,

14 ....

15 }

16 }

17 }

Listing 4.2: Example BeamNG logs

For both BeamNG and CARLA simulators, we ask the participant to evaluate the simulator
based on a number of constraints as reported in Table 4.5. The participants’ experimental
procedure is as follows:

• An introduction to the topic of research and explanation of VR and simulators, followed
by an overview of exploration with the help of survey sections, is used to direct the
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1 {

2 "simulation_data":[[

3 "NO_ACTION",

4 46.66442942619324,

5 230.62664794921875,

6 36.942161560058594,

7 0.0016762923914939165

8 ],

9 [

10 "CHANGE_WEATHER",

11 46.66442942619324,

12 "Sun(alt: 4.73, azm: 191.29) Storm(clouds=48%,

rain=8%, wind=40%)"

13 ],

14 [

15 "CAR_CROSSED_LINE",

16 46.66442942619324,

17 230.62664794921875,

18 36.942161560058594,

19 0.001712379395030439

20 ]]

21 }

Listing 4.3: Example CARLA logs

participant throughout each experimental session.

• After each testing session, scenarios are visualized and evaluated using post-session
questions.

• Each section of the simulator concludes with a final question based on the simulator as
shown in Table 4.5.

• We request feedback on the study’s impression and feedback as a final step as shown in
Table feedback section 4.5 .

4.5 Research method

Each participant completed the experiment by producing two artefacts for each task: (i)
BeamNG and the CARLA simulator generated logs. The logs include sensor data like wind
speed and car runtime coordinates; in the CARLA simulator, we also log information on dy-
namic weather conditions. We also log the users’ interactions with the SDC into the logs in
interaction scenarios; (ii) Level of safety evaluation with both close-ended and open-ended
questions for statistical and qualitative analysis.
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Figure 4.6: BeamNG study setup

Figure 4.7: CARLA study setup

4.5.1 RQ3: How closely does the SDC test case resemble

a real-world driving event, and what is the human

perception of SDCs test failures/safety?

A participant’s experience with the SDC-Alabaster can be analyzed by understanding the re-
semblance that the users felt between the real world and the SDC test scenarios. In order for
us to better understand this resemblance we analyze the participant survey scores and the
qualitative feedback that was collected during the experiments. The primary focus would be
the safety perception of the users i.e how safe the users felt while driving in the virtual test
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Table 4.5: Simulator Based Survey questions. ( MC: Multiple Choice,OA: Open answer, LS: Likert scale
(1-5 were 1 is worst and 5 is best))

Section ID Question(s) Type # Responses

Evaluation based on BeamNG

Q1.1 How would you scale the level of realism
of scenarios generated test cases in the
BeamNG simulator?

LS 41

Q1.2 Justify the level of realism of scenarios gen-
erated by test cases.

OA 41

Q1.3 How would you scale driving of AI BeamNG
Simulator?

LS 41

Q1.4 How would you scale overall experience
with BeamNG Simulator?

LS 41

Q1.5 Justify overall experience with BeamNG
Simulator?

OA 41

Evaluation based on CARLA

Q1.1 How would you scale the level of realism
of scenarios generated test cases in the
CARLA simulator?

LS 41

Q1.2 Justify the level of realism of scenarios gen-
erated by test cases.

OA 41

Q1.3 How would you scale driving of AI CARLA
Simulator?

LS 41

Q1.4 How would you scale overall experience
with CARLA Simulator?

LS 41

Q1.5 Justify overall experience with CARLA Sim-
ulator?

OA 41

Q1.6 How do you compare safety with Interac-
tion and without interaction?

OA 41

Feedback Section
Q3.1 Did this experiment change the way you

thought about the Self-driving Cars safety?
MC 41

Q3.1 Please write in a few words on your experi-
ence and suggestions.

OA 41

scenario. In order to further enhance our findings, we also analyze the qualitative feedback
provided by the users while trying out the experiment WITH or WITHOUT virtual reality. The
former is a case where the user partakes in the experiment primarily conducted on the screen
of a computer while the latter focuses on the user experience when he/she is wearing a VR
headset.

To understand the users’ perception of safety and realism in the second scenario i.e with
Virtual reality, we compare two pioneering simulators namely BeamNG and CARLA. The re-
sponses that are recorded in the experiment were both close-ended as well as open-ended.
While the close-ended questions are used to derive statistical inferences about the users’
safety and realism perception, the open-ended answers are helpful in getting an in-depth qual-
itative analysis about the same. For the research question in discussion i.e., RQ3, we mainly
analyse responses that were recorded in the non-interactive sessions which had almost no
user interventions.

A variety of visualization techniques were used to analyse and compare the safety and real-
ism perceptions with and without virtual reality Stacked histograms were used to understand
the spread and structure of the dataset that we condensed using the responses acquired from
the users. To get the statistical analyses for the data, we make use of boxplots to visualize
the statistical variables like mean and quartiles across the different attributes of the dataset.
However, these boxplots were also helpful in determining if the difference between the scores
that depicted the safety perception of users with and without virtual reality was significant.

We compare safety perception with and without virtual reality using stacked histograms,
and also we used statistical tests using boxplots and visualize and determine whether the dif-
ference between the scores is statistically significant (e.g Safety perception with and without
virtual reality).
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In order for us to understand the degree of resemblance between the SDC test case and
real-world driving, we thoroughly examine the results of the survey for each simulator section.
Once again, visualizations played a vital part in helping us to arrive at a conclusion about the
difference in the results between CARLA and BeamNG simulators. Stacked histograms were
used to understand the spread of data across the two simulators and box plots were used to
understand the distribution of the logs recorded in the SDC-Alabaster in terms of measures of
central tendency like mean and Inter-Quartile range. This aided us in verifying whether the
test case was classified as a failure or a success. In addition to this, box plots were utilized
by us to determine the extent to which the results from SDC-Alabaster matched the level of
perceived realism.

The safety perception and level of realism between the CARLA and BeamNG simulators
had to be compared and analyzed. To achieve this, stacked histograms once again played
a vital role along with the various statistical tests, which include the Shapiro Wilk test to
verify normality, the Wilcoxon rank sum test, and Vargha- Delaney statistic to determine the
effective size. As expected, we found that the safety and realism for all participants differed
as the complexity of the scenario also increased. To account for this variation, we divide the
results into two groups. The first group refers to the test case which has no obstacles in the
environment (cars, bumps, pedestrians). The second one is the scenario where the obstacles
mentioned above are all included in the scenario. This gives us a clearer picture of how
aspects of safety and realism were perceived by different users under different circumstances.
Visualizing the results using a box plot, helps us further understand the differences with
greater clarity.

4.5.2 RQ4: What is the human perception of SDC’s test

failures/safety when humans can interact with the

car?

While testing Self Driving Cars in a simulated environment which was unfamiliar to many
people, we wanted to verify the effect that interactions have on the users’ perception of safety
and failures that they witness in the simulator.

In order to analyze this difference in perception of safety among the users, we analyze
both the close-ended questionnaire i.e., participant survey scores and open-ended questions
including qualitative feedback. Since we performed tests with active interaction with the user
on the CARLA simulator we compare data obtained for the test cases on that respective sim-
ulator. Histograms are used again to understand the spread of data across the two categories
under consideration i.e., test cases with interaction and test cases without interaction. To
analyse the measures of central tendency across the two categories, box plots are used along
with the statistical tests discussed in RQ3 to establish and prove the statistical significance of
the difference between the two classes under question.
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Results

In this section we report all the findings from the experiments with the aim of answering the
research questions formulated in Section 4.

5.1 RQ3: How closely does the SDC test case re-

semble a real-world driving event, and what

is the human perception of SDCs test fail-

ures/safety?

Figure 5.1: From the graphs, the safety perception with and without VR has an almost similar
distribution.

As mentioned in section 4.5.1 we made use of proper visualizations to get a better under-
standing of the results. Figure 5.1 depicts the stacked histogram of the proportion of test
cases with different safety perceptions WITH and WITHOUT a VR headset. We observed that
the participants’ perception of safety was higher WITH the VR headset than they had WITH-
OUT it. It is also depicted in the histogram that is seen in Figure 5.1, a greater proportion
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of participants felt safe or Very safe in the same scenario WITH VR than in those WITHOUT
VR. Judging from the comment, "It felt very unsafe, with the car crashing with multiple ob-
jects. Again, the car didn’t even stop accelerating after having severely crashed and being
stuck with one of the ob- stacles" (P4), "I Felt more unsafe and the VR view made me more
worried about the incident than without it" (P1) who were wearing a Virtual reality headset
in 5.3 we can see that they felt extremely uncomfortable in the given environment which can
be attributed to the level of realism in the VR environment. We argue that the users when
not wearing VR headsets felt safer than the situations where they had to since VR simulates
a scenario which is much closer to reality than a typical monitor screen. This might also be
attributed to some users not being very familiar with the environment simulated by Virtual
Reality.

(a) Car about to crossing the Line (P27) (b) Car out of the road (P30)

Figure 5.2: Figure of BeamNG simulator from participants’ experiment

Table 5.1: Interpretation of the Vargha-Delanay effect size

Significant effect size Â12

negligible 2|Â12-0.5| <0.147

small 2|Â12-0.5|>=0.147 & <0.33

medium 2|Â12-0.5|>=0.33 & <0.474

large 2|Â12-0.5| >0.474

Afterwards, we performed a statistical analysis of the data. Statistical tests play a major
role in understanding and analyzing the behavioural patterns found in the dataset. This also
helps us establish evidence, which helps us prove our hypothesis. The first phase of perform-
ing statistical analyses was to understand if the number of safe or unsafe test cases would
follow a normal distribution p < 0.01. To this end, we made use of the Shapiro-Wilk test of
normality, which revealed that neither of the parameters of interest followed a normal distri-
bution. The p-value threshold in this approach was set to 0.05 (as a rule of thumb), which
indicates that if the p-values obtained during the test were less than 0.05, then there is a
statistically significant difference between the scores. As we see in Table 5.2 The p-value of
the level of safety WITH and WITHOUT VR is 0.15, which is greater than 0.05, which means
there is no statistically significant difference between the perception of safety between the
two simulations used, which are WITH and WITHOUT VR.
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Finding 1. From the results obtained we observe that the users’ perception of Safety
and realism varies with the simulating environment (i.e., with or without VR). Analysing
these experiences recorded in the data we can conclude that the users tend to be safer
and close to the real world when equipped with the VR headset. These results were not
statistically significant.

Table 5.2: Statistics for the test scenario WITH or WITHOUT Virtual reality

Variable Factor Min Mean Max Distribution p-value Â12

Level of safety
WITH 0.0 1.82 4.0 0.01e-12 (non-gausian)

0.15 -
WITHOUT 0.0 1.64 4.0 0.01e-8 (non-gausian)

Test outcome
WITH 0.0 0.37 1.0 0.01e-24 (non-gausian)

0.12 -
WITHOUT 0.0 0.45 1.0 0.01e-18 (non-gausian)

Table 5.3: Qualitative comments on the safety perception

Participants
Code

VR Safety per-
ception

Simulator

P7 NO Very Safe "The car followed traffic signal and was al-
most all the time within the line. Only lane
changing looks bit weird."

P7 YES Very Safe "It was all safe until it onto the pavement of
the roundabout."

P4 No UnSafe "While the car managed to detect the road
correctly, it deviated a bit from it on a
couple occasions. Even though it rightly
reached the end, in a real-life scenario devi-
ating from the road could cause a fatality."

P4 YES Very UnSafe "It felt very unsafe, with the car crashing
with multiple objects. Again, the car didn’t
even stop accelerating after having severely
crashed and being stuck with one of the ob-
stacles."

P1 YES Very UnSafe "I Felt more unsafe and the vr view made
me more worried about the incident than
without it"

Further, we analyse the relationship between the perceived safety of the participants and
the actual outcome of the test case. Figure 5.3a illustrates a box plot which shows the distri-
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(a) From the graphs, it seems clear that
the user perception of safety resembles
the SDC-Alabaster test outcome (pass/-
fail)

(b) From the graphs, failure cases, which
are the most important to test, are re-
garded as less realistic than success
cases.

Figure 5.3: Graphs visualizing Safety and realism with test outcome from SDC-Alabaster

Figure 5.4: From the graphs, it seems clear that the CARLA simulator is perceived as more
realistic compared to BeamNG

bution of data according to the results obtained, i.e PASS or FAIL. In the figure, we see that
there is a clear difference in distribution between the two categories under consideration.
As we expected, in the distribution depicting the FAIL categories, we see that the perceived
safety of the users is also low, which directly communicates that whenever the vehicle in the
scenario fails to complete the path successfully, the users perceive it to be unsafe. This proves
that the human perception and outcome of the scenario are in sync with each other, which
confirms the validity of our experiments. The same can be said about distributions that indi-
cate successful scenarios, i.e the users feel safer when the vehicle successfully completes the
scenario.
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(a) Car is out of line on the turn (P23) (b) Car crashed to the house (P7)

Figure 5.5: Figure of CARLA simulator from participants’ experiment

Finding 2. The prominent finding in this scenario was that participants’ perception
of safety (safe/unsafe) was inline with the test cases presented by the SDC-Alabaster. This
proves that the test case classification (pass/fail) is corresponding to user perception.
These results were not statistically significant.

Afterwards, we try to analyse the correspondence between the outcome of the scenario
and the level of realism in the scenario. The results obtained can be seen in Figure 5.3b.
Interestingly, the level of realism perceived by the user corresponds to the outcome of the
test conducted by SDC-Alabaster. This can be seen from the fact that whenever the test cases
passed the level of realism experienced by the user is much higher than what he experiences
when the test case fails. Although the results seem resounding between the two attributes, no
statistical evidence can be attributed to explain this phenomenon due to the lack of available
data. However, we plan to conduct further experiments in order to obtain the data which
would help us the better understand this finding.

Finding 3. This analysis yielded one of the most important findings of the research
under question. We found that in general, the failure cases which are most important to
test are also regarded as less realistic by the users in their feedback. which helps future
research on SBST and SDC to more focus on how realistic was the failing scenarios.
This enables future researchers in SBST and SDCs research to be more focused on how
realistic the failing scenarios were to optimize the test selection and minimization.

To analyze the distribution of the perceived levels of realism between the users, we use the
Shapiro-Wilk test of normality and verify that the distributions we want to verify are mostly
non-gaussian in nature as can be seen in Table 5.4. Due to this observation, we use the
unpaired Wilcoxon test, which yields a significance threshold (p-value) of 0.2e-37, indicating
that the distribution of the level of realism is statistically significant.

In order to further enhance our understanding of the Wilcoxon test conducted, we compute
the effect size of the observed differences. Here we make use of the Vargha-Delaney (Â12)
statistic [60]. The Vargha-Delaney (Â12) statistic also classifies the obtained effect size values
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as in Table 5.1 that are easier to interpret. As a further step in the analyses, we make use
of the Vargha-Delaney effect size metric, Â12 has an effect size of 1. This result reveals to
us that the effect size is largely significant which shows that the perception of safety among
users is dependent on the obstacles in the environment in the sense that users feel safer in
scenarios where there are no obstacles compared to the ones with obstacles, as seen in the
Table 5.1. Further, we can see feedback from participants on test scenarios with obstacles,
as one participant said, quoting "The scenario was very real along with traffic lights, day
and night, foggy and it looked like high quality graphics." (P7) and another participant felt
unsafe with the other bike traffic, quoting "for the majority of the ride, the drive was safe.
It was responding well to the abnormal behaviour of the motorbike applying brakes abruptly.
Towards the end, it again hit the sideways at the roundabout. This made it unsafe. " (P19).

Table 5.4: Statistics for the test scenario WITH or WITHOUT obstacle

Variable Factor Min Mean Max Distribution p-value Â12

Level of safety
WITH 0.0 1.39 4.0 0.01e-13 (non-gausian)

0.64e-8 0.56
WITHOUT 0.0 2.13 4.0 0.01e-9 (non-gausian)

Level of realism
BeamNG 0.0 3.75 5.0 0.01e-13 (non-gausian)

0.2e-37 1
CARLA 0.0 3.75 5.0 0.01e-9 (non-gausian)

Finding 4. From the experiment, we found that the effect size is due to the dif-
ference in the data acquired for scenarios involving obstacles and those not involving
obstacles (largely different). The perception of realism among users is significantly de-
pendent on the presence of obstacles in the given scenario.

Finally, we compare the realism of the simulators and compare BeamNG and CARLA in
Figure 5.4 and 5.6. This research was conducted as a sort of groundwork to find the ma-
jor differences between CARLA which is the industrial standard and BeamNG which is the
academic standard as we strongly believe this will pave the way for future research. Interest-
ingly, participants felt the CARLA simulator was more realistic than the BeamNG. According
to participants, the BeamNG simulator and the environment were not realistic, quoting "It
was not too realistic, but it was also not too shabby. The roads specifically felt very real, but
the environment itself did not feel too polished" (P8). CARLA simulator was perceived as more
realistic, quoting "This level was more realistic compared to the previous simulator"(P8).

To analyze the distribution of the perceived levels of realism between the simulators, as
seen in Table 5.7, we use the Shapiro-Wilk test of normality to verify that the distributions
we want to verify are mostly non-gaussian in nature. which yields a significance threshold
(p-value) of 0.1E-16, indicating that the level of realism is statistically significant. Due to this
observation, we use the unpaired Wilcoxon test, and as a further step in the analyses, we
make use of the Vargha-Delaney effect size metric, Â12 has an effect size of 0.85. This result
reveals to us that the effect size is largely significant, which shows that the perception of
realism among Simulator has huge differences and users felt CARLA Simulator to be more
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realistic than BeamNG, as seen from the quote made by the participant, which says "best
than BeamNG t generating realistic environments and scenarios, as well as a better graphical
aspect." (P20). This might be attributed to CARLA having more realistic scenarios that depict
a lot of obstacles and area maps that can be found by users in everyday scenarios.

Further to show we analysed the comments from participants and see in Table 5.8. as a
participant said CARLA was a city map and it had (pedestrians, cars, other vehicles, traffic
signs, etc.) which made participants more realistic to the real world, Quoting "it was possible
to observe almost anything you see in a City (pedestrians, cars, other vehicles, traffic signs,
etc.). It was also a way more realistic driving style"(P1). In the following Table 5.5 and 5.6 we
can categorize aspects (or factors that) contribute to high and low safety perception for both
CARLA and BeamNG simulators.

Finding 5. The VR view improves the CARLA simulator’s safety; vehicles, pedestri-
ans, traffic rules, safety on curves, and the driver’s perspective.

Complementarily, VR view and Driver view contribute to the enhancement of BeamNG
safety.

Table 5.6: What makes the safety perception low for CARLA and BeamNG

Category
"others"

Description Level of Safety Comments BeamNG CARLA Participants

Car was
very fast

Vehical drow very fast

Unsafe "I felt like the start
of the self-driving car
was very fast com-
pared to a normal
driving..." (P1)

YES -
P1,P2,P15,
P31,P34,P37

Unsafe "The car drove too
fast over the speed
bumps" (P2)

Unsafe "Crashed and also
too fast for the
bumps." (P15)

Very Unsafe "the car was going
pretty fast." (P31)

Unsafe "exited lane, too
fast" (P34)

Unsafe "the car went faster
and drifted a little bit
in the curve" (P37)

VR view
felt more
unsafe

The view of the VR makes the
level of perceived safety low.

Safe "I Felt more unsafe
and the vr view made
me more worried
about the incident
than without it." (P1)

YES - P1

Lane
keeping

the car always follows the
lane and keep track of traffic
rules on lane keeping .

Unsafe "The car did abrupt
changes in steering
and throttle although
it kept most of the
time the lane." (P2)

YES -
P2,P16,P23,
P29,P30,P34
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Unsafe "the car is not lane
keeping properly and
even seems to steer
off the road at the
end.(P16)

Very unsafe "Ran off the roads
multiple times and did
not follow safety lines
in curves" (P23)

Very unsafe " outside the lines in
the curves" (P29)

Very unsafe " Drive out of the road
and not in the middle
of the lane" (P30)

Unsafe "exited lane, too
fast" (P34)

Curves
Steering actions during curves
was very unsafe

Unsafe "The car cut some
curves and it was too
fast." (P1)

YES YES

P1,P4,P5,P19,
P17, P23,P29,
P30,P31,P36,
P37

Unsafe "the car still went a bit
off-road." (P4)

Unsafe "driving too fast dur-
ing the curves" (P5)

unsafe "turning was not
good. the first right
turn was very off.
.(P19)

Unsafe "Cannot term it safe
as car drove off the
road" (P17)

Very unsafe "Ran off the roads
multiple times and did
not follow safety lines
in curves" (P23)

Unsafe "The car drove out-
side the lines and was
too fast in the curves
" (P29)

Very unsafe " Drive out of the road
and not in the middle
of the lane" (P30)

Very unsafe " When the car starts
to go off the road
when driving in a
curve it feels pretty
unsafe. " (P31)

Unsafe "car went out of the
road partially on
curves" (P36)

Unsafe "the car went faster
and drifted a little bit
in the curve" (P37)

Crossed a
STOP
sign

Car crossed crossed a STOP
sign

Neutral "the car crossed a
STOP sign without
stopping.." (P2)

- YES

P2,P5,P14,
P15, P16,P1,
P24,P26,P29,
P31

Unsafe "it doesnt recognized
the stop signal" (P5)

Neutral "Safe- maintains a
speed limit and traffic
limitations but fails
to stop at the stop
signs. This makes it
unsafe" (P14)

Unsafe "Goes towards
the edge of the
road" (P15)

Unsafe "the car was not so
smooth at the turns
and the speed was
high at the turns.
" (P16)
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Unsafe "the car didnt stop on
STOP sign and red
light " (P1)

Unsafe "didnt stop at a stop
sign, otherwise pretty
safe " (P24)

Unsafe "skip a stop sign
" (P26)

Unsafe "Car didn’t stop at
stops " (P29)

Unsafe "car ignores stop
signs" (P31)

Car
abrupt
fre-
quently

Car stops frequently.
Safe "safe but instead of

going slow when a car
is slow it accelerates
and stops too many
times." (P20,29)

- YES P20

Very unsafe "brakes were very
abrupt" (P29)

Finding 6. The factor limiting CARLA’s safety is that the VR view felt more dan-
gerous; CARLA frequently crossed a STOP sign and stopped abruptly. Complementarily,
the reason for limiting the safety of BeamNG is that the car was traveling at a high rate
of speed, and the VR view felt more dangerous.

Figure 5.6: From the graphs, It shows CARLA slightly more realistic than BeamNG

Further, we compare how participants perceive safety in both the CARLA and BeamNG
simulators. In contrast to the results observed in Figure 5.7 it’s clear that participants felt
safer in the CARLA simulation than in the BeamNG. This was an expected result, as we saw
in the previous result, where CARLA was considered more realistic than BeamNG Simulator,
so it was obvious that participants felt safer because the scenario was more realistic. As
per participants said, they felt CARLA was better than BeamNG environments and scenarios,
quoting "best than BeamNG generate realistic environments and scenarios, as well as a better
graphic aspect" (P20). Another P35 said the CARLA test case was a city, which helped them
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Table 5.5: What makes the safety perception high for CARLA and BeamNG?

Category Description Level of Safety Comments BeamNG CARLA Participants

VR view
The view of the VR makes the
level of perceived safety high.

Safe "i felt safer with the vr
view" (P1)

YES YES P1,P8

Very unsafe " I felt as unsafe
as without VR
glasses." (P8)

Vehicles
pedes-
trian and
traffic
rules

Other vehicles,pedestrian and
and traffic rules improved the
safety perception

Very Safe " impressive consid-
ering that now there
were other cars, ob-
stacles and people in
the scene.." (P1)

- YES
P1,P5,P6,
P22,P39

Safe " it stoped when the
traffic light was red.
" (P5)

Very safe "following the traffic
light and very safe.
" (P6)

safe "then during the
whole trip it re-
spected the lights, the
speed and the road
limits" (P22)

safe "car was following
rules and drived care-
fully" (P39)

Safety on
curves

Steering actions during curves
was very safe.

Safe "I Felt more unsafe
and the vr view made
me more worried
about the incident
than without it." (P1)

- YES
P1,P7,P11,
P17,P18

Safe "The car followed traf-
fic signal and was
almost all the time
within the line." (P7)

Neutral "the car followed the
traffic signals speed
limit and lanes" (P11)

Very safe "The car seems to
be able to lane keep
almost perfectly...
" (P17)

Very safe "The car follows the
traffic rules and does
a good job keeping
track of vehicles and
pedestrians. " (P18)

Drivers
view

drivers view make more safer.
Very Safe "From inside the car,

it felt very safe and
smooth. ." (P16)

YES YES P6,P2,P5

safe "From inside feels
more safe, since I can
check speed its going
and we dont really see
thats its going ouside
the road" (P2)

safe "Being inside the car
gives a full perspetive
of the scenario and it
felt very safe" (P5)

feel more realistic, quoting, "it was more realistic than BeamNG since it was an actual city.
"The car was also driving smoother, which helped with the realism." (P35).
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Figure 5.7: From the graphs, it seems clear that the safety perception CARLA simulator is
higher than simulator BeamNG

Table 5.7: Statistics for the test scenario of CARLA and BeamNG simulator

Variable Factor Min Mean Max Distribution p-value Â12

Level of safety
BeamNG 0.0 1.32 4.0 0.01e-11 (non-gausian)

0.05e-10 0.68
CARLA 0.0 2.20 4.0 0.03e-11 (non-gausian)

Level of realism
BeamNG 0.0 3.36 5.0 0.01e-13 (non-gausian)

0.1e-16 0.85
CARLA 0.0 4.14 5.0 0.01e-15 (non-gausian)

To analyze the distribution of the perceived levels of safety between the simulators we use
the Shapiro-Wilk test of normality as seen in Table 5.7 and verify that the distributions we
want to verify are mostly non-gaussian in nature. which yields a significance threshold (p-
value) of 0.05e-10, indicating that level of safety is statistically significantly higher in CARLA
is than BeamNG. Due to this observation, we use the unpaired Wilcoxon test, we make use
of the Vargha-Delaney effect size metric, Â12 has an effect size of 0.68. This result reveals
to us that the effect size is largely significant, which shows that the perception of safety
among Simulator is high and users feel safer in BeamNG scenarios compared to CARLA test
scenarios, as seen in the Table 5.1.

Finding 7. According to the results of the experiment, The CARLA simulator
was more realistic than the CARLA simulator because the participants found the CARLA
scenarios more realistic. These results were statistically significant with p-value> 0.1e-
16.

When we check the results between complex scenarios ( scenarios with obstacles such as
bumps, other cars, and pedestrians) and non-complex (without any obstacle). As we expected
we can see in Figure 5.9 participants felt safer in simple test scenarios compared to a complex



56 Chapter 5. Results

Figure 5.8: Participants’ P17 outside view car crash to the roundabout.

scenario. Which has been proved by analysing the distribution of the perceived levels of safety
between complex and simple scenarios. We use the Shapiro-Wilk test of normality and verify
that the distributions we want to verify are mostly non-gaussian in nature as seen in Table
5.4, which yields a significance threshold (p-value) of 0.64e-8, indicating that level of safety
is statistically significantly higher in complex scenarios than simple scenarios. Due to this
observation, we use the unpaired Wilcoxon test, we make use of the Vargha-Delaney effect
size metric, Â12 has an effect size of 0.56. This result reveals to us that the effect size is largely
significant, which shows the perception of feeling more unsafe with the complex scenario, as
seen in Table 5.1.

Finding 8. Analyzing the results of the experiment, we can see that the users’ per-
ception of the complexity of the scenario also affects how safe they feel in that particular
scenario. From the tests, we found that the users felt less safe when the environment
grew complex.

Overall, 5.3b and 5.3a clearly show that humans’ perception of SDCs’ test failures/safety
resembles that of humans. Therefore, it provides evidence that the SDC-Alabaster classifica-
tion of the test case scenarios closely resembles human perception, which answers one part of
RQ3 is "How closely does the SDC test case resemble a real-world driving event?". The other
part of RQ3 is "Does the Test case resemble a real-world driving event?" When we observe
Figure 5.4 we can observe that CARLA is more realistic compared to BeamNG but still both
simulators do not show their close resemblance. In general, we see in Table 5.9 we observe
the feedback from participants on the simulators, as one participant said "the road was not
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Table 5.8: Some qualitative comments on the CARLA simulator’s Quality

Participants Simulator Simulator

P1 CARLA "It was possible to observe almost anything you see in a
city (pedestrian, cars, other vehicles, traffic signs, etc.).
It was also way more realistic driving style."

P5 CARLA "Very good actually. I don’t put a 5 because there is
always room for improvement and I’ve seen game en-
gines with more realistic results, but I was positively
surprised. While the car was designed as a single box,
the landscape was much more realistic, which made you
more immerse in the scenario. Also the fact that it uses
full VR (3D) makes a big difference."

P20 CARLA "best than BeamNG t generate realistic environments
and scenarios, as well as a better graphical aspect."

P35 CARLA "It was more realistic than BeamNG since it was an
actual city. The car was also driving smoother which
helped for the realism."

Figure 5.9: From the graphs, it seems clear that when test scenarios are complex safety
perception is low compare with simple scenarios( Without obstacles)

realistic in some cases, like a very small side road in warmup scenario." (P36) for BeamNG
simulator, " The whole simulation is haltingly and felt very artificial." (P2) for CARLA, which
is surprising given that simulators like CARLA and BeamNG are used widely used in the in-
dustry and academia. Considering the state of the art for testing SDCs testing but still we
see the participants felt less realistic. Simulator BeamNG used in SBST 1 and CARLA is an
industrial standard simulator that is used in various domains of vehicles [19]. But when we
look at the statistical analysis Table 5.5 and the Figure 5.6 we can see no simulator has any
high perception of level realism. This could be because of limited intelligence of BeamNG
toward obstacles and the speed of the car. In CARLA, there were dynamic obstacles that were

1https://sbst21.github.io/

https://sbst21.github.io/
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too close, and the driving was poor.

Table 5.9: Some qualitative negative comments on the simulator’s realism

Participants Simulator Simulator

P25 BeamNG "The scenario felt ok, especially the one with the obstacles and the bumps of the
car on the obstacles on the road. Same for the quality of the perception in the
simulation inside the car. It would be nice to add the sound to the scenario to
increase realism."

P28 BeamNG "It looks like a computer game to me and I can differentiate clearly between
reality and fiction as far as I know."

P36 BeamNG "the road was not realisitic in some cases, like a very small side road in warmup
scenario."

P40 BeamNG "Low graphics from the environment, no other cars or people around, car feels
quite regid and going over the obsticles is not bumpy."

P2 CARLA "The whole simulation is haltingly and felt very artificial."
P33 CARLA "The graphics were not clear sometime, also the car drive in a nonuniform way

which makes sometime the dizzy experience."
P10 CARLA "I do not feel self driving cars safe especially with dynamic obstacles and chang-

ing driving conditions. It is very difficult for self driving car to tackle with real
world drivers as they can change their decision."
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5.2 RQ4: What is the human perception of SDC’s

test failures/safety when humans can inter-

act with the car?

Figure 5.10: From the graphs, the perception increases when participants can interact with
the car.

As mentioned in section 4.5.2 we made use of proper visualizations to get a better under-
standing of the results. When we see the Figure 5.10 clearly shows that the proportion of test
cases with varying safety perceptions, with and without interaction has a huge difference.
when we check further with participants’ feedback we can see that participants felt safer
when had some interaction, quoting "it is safer when controlling safety zones" (P20), "Having
the control is better for safe perception" (P26). When we compare the same test case with
similar attributes (obstacles, traffic, etc.) and compare the result we see participant P35 felt
safer when he/she could control the care. Without interaction "No slowing down for the inter-
section and later crashed in the roundabout" (P35) and with interaction, "I was able to slow
down the car in front of the intersection and front of the roundabout" (P35), "Could have a
higher level of control over the interactions " (P12). Participant feedback included how we
can utilize interaction until the AI-agent model is fully trained quoting "The interactive exper-
iments made me see that a combination of self-driving AI with human control could be a way
to solve the initial phases of self-driving cars, until cars are properly trained." (P5). This could
be useful not only for testing autonomous vehicles but also for boosting user confidence.

We did further analyze the distribution of the perceived levels of safety with and without
interaction as you can see in Figure 5.11, We use the Shapiro-Wilk test of normality and verify
that the distributions we want to verify are mostly non-gaussian in nature as seen in Table
5.10, which yields a significance threshold (p-value) of 0.001, indicating that level of safety is
statistically significant. Due to this observation, we use the unpaired Wilcoxon test, we make
use of the Vargha-Delaney effect size metric, Â12 has an effect size of 0.36. This result reveals
to us that the effect size is medium significant, which shows that the perception of safety
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Figure 5.11: From the graphs, participants can interact with the car, their perception im-
proves.

Table 5.10: Statistics for the test scenario WITH or WITHOUT interaction

Variable Factor Min Mean Max Distribution p-value Â12

Level of safety
WITH 0.0 1.68 4.0 0.06e-10 (non-gausian)

0.001 0.36
WITHOUT 0.0 2.20 4.0 0.03e-11 (non-gausian)

when the participant can interact with the car is statically higher than without interaction, as
seen in Table 5.1.

Finding 9. Our experiment with the participants being able to interact with the
cars provided evidence that with a slight interaction, humans felt more safe compared to
the results without any interaction. This demonstrates the importance of having a human
in the loop of testing self-driving cars. These results were statistically significant with a
p-value > 0.05e-10.

Unexpectedly the slight interaction with the car improved the safety perception of partic-
ipants significantly. This is a novel finding that we have in our use case scenario. We usually
come across experiments where that do not take into account the human interaction with the
vehicle [1]. However, according to our findings, we observe that human interaction plays a
significant part in the safety perception of the users. We believe that this finding would play a
prominent role in future research as it allows experiments to include user interaction with the
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(a) Participants’ control when there were acci-
dents (P4)

(b) Participants’ control with interaction (P23)

Figure 5.12: Figure of CARLA simulator with interaction from participants’ experiment

Table 5.11: Qualitative comments on the CARLA simulator’s safety with or without interaction

Interaction Participants Code Simulator

NO

P1 "similar level of unsafety. main difference was that the not so smooth behavior of the car
happens also in the proximity of other cars (fast restarts followed by rapid stops, a more
safe driving would be ideal). However, without obstacles i felt in some cases the car was
too slow compared to the one of BeamNG "

P7 "It was very unnsafe. The vehicle was not able to take turn on the roundabout and there
was accident."

P35 "No slowing down for the intersection and later crashed in the roundabout"
P41 "started okay, but the unsteady behaviour of other vehicles made me feel uncomfortable,

late stopping of ego vehicle also, very unsafe behaviour around roundabout"

YES

P1 "the fact i could control the car when needed, gave me a safer perception of the driving
experience. Moreover, i could speed up the car when i wanted to."

P4 "With a bit of control it feels safer, especially being able to adjust the speed in dangerous
situations. However, it is still not safe since the car ends up going off road at the end of
the scenario."

P20 "it is safer when controlling safety zones"
P26 "Having the controll is better for safe perception"
P35 "I was able to slow down the car in front of the intersection and in front of the round-

about"
P1 "with interaction, I got the feeling that was slightly more easy to feel more safe, still with

unpredictable behaviors of the car, the perception of safety was very low."
P2 "With interaction I felt safer since I had still the final control to stop the car although I

could not steer it."
P4 "With interaction it feels much safer, since you can control speed in case of emergency."

vehicles at centre of the testing automation. This is an unexplored dimension of simulating
autonomous cyber-physical systems in which we believe a lot of more diverse studies need to
be conducted.

Table 5.12: What makes the interaction test case for the CARLA simulator safer?

Category "others" Description Comments Participants

Unpredictable
behaviors

Car was still unpredictable
behaviors with interaction

"I got the feeling that was slightly
more easy to feel more safe, still
with unpredictable behaviors of the
car, the perception of safety was
very low." (P1)

P1
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Late reaction
Car responded very slowly to the
participant’s action.

"However, the car didnt react to my
orders as I would have expected at
the moment I wanted to avoid the
accident " (P22)

P22,P25,P40

"In the end the perception of the
safety was quite comparable with
and without the interaction, maybe
because on of the simualation with
the interaction ended up anyway
with an accident but it was nice to
have the possibility to interact with
the simulation." (P25)
"but after I did not manage to stop
the common crash, I felt more in-
secure. I would still prefer to have
a say and give feedback to control
the speed to at least reduce the in-
tensity of the crashes." (P40)

interaction has no
effect on the
participants

Didn’t find any impact with
interaction

"I did not feel a large difference be-
tween the two as I did not feel like I
had a big impact on the cars behav-
ior" (P3)

P3,P6,P13,P14,P19
P2,P23,P27,P28,P31

"not very effective while interact-
ing" (P6)
"doesnt make a difference as the
responsiveness was slow and also
couldnt perceive much change in
the way the ai functioned" (P13)
"It would be the same. The car was
slowing down automatically with-
out me pressing the unsafe key dur-
ing the interactive session." (P14)
"not of much use I would say. At
slow speeds within the city it is still
useful." (P19)
"I did not feel any difference." (P2)
"With interaciton is more safety.
" (P23)
"I did not feel like it made that
much of a difference with or with-
out interaction." (P27)
"no difference basically" (P28)
"Does not change much, since there
is no instant feedback. Since one
does not have direct control over
the brakes" (P31)

Avoid accident
Felt safer so they can avoid
accidents

"It help that i have a little control
but still could do much when the ac-
cident happend so maybe even bet-
ter." (P21)

P21,P32

"With interaction, I could control
speed and avoid accidents. So I
would prefer that." (P32)

Stop car Felt safer so they can stop car
"With interaction I felt safer since
I had still the final control to stop
the car although I could not steer
it." (P2)

P2,P37

"I think it feels much safer with
interactions because I know I can
intervene if something unexpected
happens. " (P37)

Slow down
Felt safer so they can slow down at
critical moments

with interaction it feels much safer,
as I could tell the car to slow down
in critical moments" (P24)

P24,P35

"With interaction I was able to
slow down the car beofre the inter-
section and the roundabout which
helped alot to feel safer." (P35)
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Perceived safer
participatns felt more safe with
interaction

"Safety with Interaction made me
feel I had a bit more control of the
situation compared to without in-
teraction " (P22)

P22,P29,P30,P33,
P34,P35,P36,P37,
P38,P39,P40

"Much safer with interaction" (P29)
"I feel much safer when I can inter-
act." (P30)
"With interaction, it was a better ex-
perience." (P33)
"A bit better, and the tool gets di-
rect input which most probably will
be helpful" (P34)
"with the controll, i felt more safe,
even though i could not do exactly
what i wanted to do with the con-
troll " (P36)
"It is a little bit saver to have the
possibility to interact, but that is
the drivers habit" (P38)
"Safety with interaction was bet-
ter" (P39)
"I was happier and feeling safer
that I can control through my feed-
back at the begining" (P40)





Chapter 6

Discussion

This section discusses additional factors that might impact the results of the research ques-
tions and provides more insights and insights surrounding them.

In addition, it includes an overview of summaries of feedback and lessons learned from the
participant on the conducted study.

6.1 Safety perception and realism of test cases

with various participants’ factors (RQ3)

As we have seen in Section 5 we observed that the participants’ perception of safety and level
of realism varied with factors like WITH or WITHOUT VR, the difference between the simula-
tors, and compared the results between the complexity of test scenarios and with interaction.
Here, we will examine how the participant’s background influences the outcomes.

6.1.1 Does the participants’ age affect their perception?

Figure 6.1 depicts the stacked histogram of the proportion of test cases of different ages. We
observed that the participants’ perception of safety was slightly higher in people in the age
group 18–30 years compared to the people with an age above > 30. We can conclude that
age doesn’t influence a lot on the level of safety, and for further investigation, we analyze the
difference in the distribution of the two categories by performing the Shapiro-Wilk test on the
data samples obtained, which can be seen in Table 6.1. The p-value threshold in this approach
was set to 0.05 (as a rule of thumb) which indicates that if the p-values obtained during the
test were less than 0.05, then there is a statistically significant difference between the scores.
As you can see in Table 6.1 the "p-value" parameter has a value of 0.35, which reveals that
there is no statistical evidence that there is a difference between the distribution.

Further, we analyze the level of realism perceived by the corresponding participants’ age,
as you can see in Figure 6.2a. Surprisingly, the level of realism perceived by participants aged
18 to 30 is significantly higher than that of those aged 30 and older. We speculate that younger
generations (such as Generation Z and Millennials1) are very accustomed to the new graphic
user interface, VRs, and digital media, which makes them more familiar with the technology
than older age groups, which have higher expectations. also, because younger generations

1http://tony-silva.com/eslefl/miscstudent/downloadpagearticles/defgenerations-pew.pdf

http://tony-silva.com/eslefl/miscstudent/downloadpagearticles/defgenerations-pew.pdf
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Figure 6.1: From the graphs, it is evident that participant age has no effect on safety percep-
tion, as the distributions are almost identical.

Table 6.1: Statistics for the test scenario based of different age group.

Variable Age Min Mean Max Distribution p-value Â12

Level of safety
>30 0.0 1.67 4.0 0.08e-9 (non-gausian)

0.35 -
18-30 0.0 1.78 4.0 0.09e-16 (non-gausian)

Level of realism
>30 0.0 3.58 5.0 0.07e-11 (non-gausian)

0.01e-04 0.37
18-30 0.0 3.93 5.0 0.01e-18 (non-gausian)

are more likely to be exposed to newer forms of media at an earlier age in life. In addition,
as seen in prior research [16] young drivers’ attitudes toward the most important road safety
measures and their perceptions of their effectiveness are very low.

To analyze the distribution of the perceived levels of realism between the participants’
age groups, we use the Shapiro-Wilk test of normality and verify that the distributions we
want to verify are mostly non-gaussian in nature, as can be seen in Table 6.1. Due to this
observation, as we can see in Figure 6.2b, which yields a significance threshold (p-value)
of 0.1e-1, indicating that level of realism is statistically significant, As a further step in the
analyses, we use the unpaired Wilcoxon test and make use of the Vargha-Delaney effect size
metric, Â12 has an effect size of 0.37. This result reveals to us that the effect size is moderately
significant, as seen in Table 5.1. which proves that participants in the age group 18–30 have
a significantly higher perception of realism than participants in the age group 30 and older.

Finding 10. According to the results of the experiment, age plays an important
role in how realistic the simulators are. Participants in the age group 18–30 felt simula-
tors were more realistic than those who were older than 30 years. We hypothesize that
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(a) The graphs make it very clear that one of the
most important factors in determining how realistic
test scenarios are is the participant’s age.

(b) From the graphs, it seems clear that
different age groups have impacts on the
level of realism of the test scenarios.

Figure 6.2: Graphs visualizing level of realism based on age of the participants’

younger generations are more habituated to modern graphical user interfaces, virtual re-
ality, and digital media, making them more comfortable with technology than older age
groups, who have greater expectations.

6.1.2 Does the participants’ gender play any role in safety

perception and realism in SDC test cases?

Figure 6.3: From the graphs, the Gender has an effect on the safety perception.

Further, we analyze if the gender of the participants has any effect on the perceived safety
and realistic nature of the test scenarios. Figure 6.3 depicts the stacked histogram of the
proportion of test cases of different Gender (Male/Female). When we compared, we found
that female participants had a more positive perception of safety than male participants. As
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seen in previous research [42], men are more accustomed to injuries and accidents than
women, so male participants felt more insecure. We analyze the difference in the distribution
of the two categories by performing the Shapiro-Wilk test on the data samples obtained, which
can be seen in Table 6.2. The p-value threshold in this approach was set to 0.05 (as a rule of
thumb) which indicates that if the p-values obtained during the test were less than 0.05, then
there is a statistically significant difference between the scores. As you can see in Table 6.2
the "p-value" parameter has a value of 0.27, which reveals that there is no statistical evidence
that there is a difference between the distributions.

Table 6.2: Statistics for the test scenario based of different gender.

Variable gender Min Mean Max Distribution p-value Â12

Level of safety
Man 0.0 1.72 4.0 0.07e-18 (non-gausian)

0.27 -
Women 0.0 1.84 4.0 0.06e-7 (non-gausian)

Level of realism
Man 0.0 3.77 5.0 0.07e-11 (non-gausian)

0.02 0.26
women 0.0 4.02 5.0 0.01e-18 (non-gausian)

Figure 6.4: The graphs make it very clear that one of the women felt test scenarios were more
realistic than men

Further, we analyze the level of realism perceived by the corresponding participant’s gen-
der, as you can see in Figure 6.5. Astonishingly, the level of realism perceived by the female
participants was significantly higher than males. As we see the feedback from a female partic-



6.1 Safety perception and realism of test cases with various participants’ factors (RQ3) 69

Figure 6.5: From the graphs, it seems clear that gender has different impacts on the level of
realism of the test scenarios.

ipant quoting "The scenario it quite realistic probably also because it considers the simulation
inside a city in which the car has to deal with traffic signs and other cars, but also people."
and when we compare with male participant feedback "The movements were very abrupt, the
physics did not feel too realistic" which shows with female participants took the test scenarios
more realistic than males. This would cause a higher level of expectation in male participants
compared to female participants. Also, as we can observe in Figure 6.6, men played PC games
more than women, which would make the perceived scenarios more realistic. We will compare
the effects of playing PC games on perceived safety and level of realism in section 6.1.5.

To analyze the distribution of the perceived levels of realism between the participants’
genders, we use the Shapiro-Wilk test of normality to verify that the distributions we want to
verify are mostly non-gaussian in nature, as can be seen in Table 6.2. Due to this observation,
as we can see in Figure 6.4, which yields a significance threshold (p-value) < 0.02, indicating
that the level of realism is statistically significant. As a further step in the analyses, we use
the unpaired Wilcoxon test and use of the Vargha-Delaney effect size metric, Â12 has an effect
size of 0.26. This result reveals to us that the effect size is small and significant, as seen
in Table 5.1 because of the unequal distribution of participants (men: 31, female: 10). But
still, it proves that participants of the female gender have a significantly higher perception of
realism than participants of the male gender.

6.1.3 Does the participants’ field of expertise or the stud-

ies (IT v.s non-IT experts) they’ve done affect the

level of perceived realism and safety of test sce-

narios?

Next, analyze if the expertise of the participants (IT versus non-IT experts) has any effect
on the perceived safety and realistic nature of the test scenarios. Figure 6.7 depicts the
stacked histogram of the proportion of test cases for a different group of participants who
study or work in computer science and participants from another background (i.e business
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Figure 6.6: This graph clearly shows that male participants played more PC games compared
to female participants.

Figure 6.7: From the graphs, it is evident that non-IT participant safety perception higher
than IT experts.

administration, banking and finance, economics, AI ethics, political science, and biology).
When comparing the IT expert participants, we found that non-IT expert participants had
a more positive perception of safety than IT expert participants. This was to be expected
given that IT experts have a greater amount of experience with graphical user interfaces and
simulators than those who are not experts in IT. We analyze the difference in the distribution
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of the two categories by performing the Shapiro-Wilk test on the data samples obtained, which
can be seen in Table 6.3. The p-value threshold in this approach was set to 0.05 (as a rule of
thumb) which indicates that if the p-values obtained during the test were less than 0.05, then
there is a statistically significant difference between the scores. As you can see in Table 6.2
the "p-value" parameter has a value of 0.81, which reveals that there is no statistical evidence
that there is a difference between the distributions.

Table 6.3: Statistics for the test scenario based on IT versus non-IT experts

Variable IT Experts Min Mean Max Distribution p-value Â12

Level of safety
Yes 0.0 1.75 4.0 0.04e-18 (non-gausian)

0.81 -
No 0.0 1.7 4.0 0.01e-21 (non-gausian)

Level of realism
Yes 0.0 3.80 5.0 0.07e-11 (non-gausian)

0.02 0.26
No 0.0 4.1 5.0 0.01e-8 (non-gausian)

Figure 6.8: The graphs make it very clear that non-IT experts felt test scenarios were more
realistic than IT experts

As you can see in Figure 6.8. Surprisingly, the level of realism perceived by the non-IT
expert participants was significantly higher than that of the IT experts. We speculate that
IT experts are more used to virtual environments compared to non-IT experts. This would
cause a higher level of expectation among IT expert participants compared to non-IT expert
participants. As we can see from the feedback of P12, who is from Business administra-
tion background quoting "Was not very realistic; Poor graphics and over unrealistic " (P12)
This demonstrates that non-IT participants had a unique level of perception, prompting re-
searchers to conduct experiments with participants from diverse backgrounds in the future.

To analyze the distribution of the perceived levels of realism between the participants’ IT
versus non-IT experts, we use the Shapiro-Wilk test of normality to verify that the distributions
we want to verify are mostly non-gaussian in nature, as can be seen in Table 6.3. Due to this
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Figure 6.9: From the graphs, it seems clear that IT versus non-IT experts has major impacts
on the level of realism of the test scenarios.

observation, as we can see in Figure 6.9, which yields a significance threshold (p-value) <
0.05, indicating that the level of realism is statistically significant. As a further step in the
analyses, we use the unpaired Wilcoxon test and make use of the Vargha-Delaney effect size
metric, Â12 has an effect size of 0.26. This result reveals to us that the effect size is small
and significant, as seen in Table 5.1 because of the unequal distribution of participants on the
dataset(IT: 30, non-IT: 11). But still, it proves that participants of the non-IT experts have a
significantly higher perception of realism than participants of the IT experts.

6.1.4 Does the prior experience with VR participants im-

pacting their perceived level of safety and realism?

When we analyze the participants’ who already used VR, do they have any effect on the per-
ceived safety and realistic nature of the test scenarios? Figure 6.10 depicts the stacked his-
togram of the proportion of test cases for the level of safety of the participants who already
used VR. When comparing the results, we found that participants who already used VR and
who didn’t use VR same similar safety perceptions. We analyze the difference in the distribu-
tion of the two categories by performing the Shapiro-Wilk test on the data samples obtained,
which can be seen in Table 6.4. The p-value threshold in this approach was set to 0.05 (as
a rule of thumb) which indicates that if the p-values obtained during the test were less than
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Figure 6.10: From the graphs, it is evident that participant who already used VR has no effect
on safety perception.

0.05, then there is a statistically significant difference between the scores. As you can see in
Table 6.4 the "p-value" parameter has a value of 0.80, which reveals that there is no statistical
evidence that there is a difference between the distributions.

Table 6.4: Statistics for the test scenario based on participants who already used VR.

Variable Used VR Min Mean Max Distribution p-value Â12

Level of safety
Yes 0.0 1.77 4.0 0.01e-10 (non-gausian)

0.80 -
No 0.0 1.80 4.0 0.06e-10 (non-gausian)

Level of realism
Yes 0.0 3.82 5.0 0.04e-14 (non-gausian)

0.60 -
No 0.0 3,9 5.0 0.03e-13 (non-gausian)

Further, we analyze the level of realism perceived by the corresponding participants who
have already used VR, as you can see in Figure 6.11. As speculated, the level of realism
perceived among participants who already used VR was lower than that of participants who
hadn’t used VR before, because a first-time user’s expectations would be lower compared to
those of participants who had already used VR, this is consistent with the results of previous
studies involving newcomers and experts of VR [14]. To analyze the distribution of the per-
ceived levels of realism among the participants who had already used VR, we analyzed the
difference in the distribution of the two categories by performing the Shapiro-Wilk test on the
data samples obtained, which can be seen in Table 6.4. The p-value threshold in this approach
was set to 0.05 (as a rule of thumb), which indicates that if the p-values obtained during the
test were less than 0.05, then there is a statistically significant difference between the scores.
As you can see in Table 6.4 the "p-value" parameter has a value of 0.60, which reveals that
there is no statistical evidence that there is a difference between the distributions.
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Figure 6.11: From the graphs, it is evident that participants who already used VR felt test
scenarios were less realistic.

6.1.5 Do the participants’ who play pc games as any im-

pact on the level of safety perception and realism

in SDC test cases?

Figure 6.12: From the graphs, it is evident that participant who play pc Games has effect on
safety perception.

When we analyze the participants who play PC games, do they have any effect on the
perceived safety and realistic nature of the test scenarios? Figure 6.12 depicts the stacked
histogram of the proportion of test cases for the level of safety of the participants who play
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pc games. When comparing the results, we found that participants who play PC games have
a more positive perception of safety than participants who don’t play any PC games. This
was the expected result, as virtual simulators are based on engine simulators similar to PC
games i.e, CARLA is based on Unreal Engine 2 which is also used in games like Fortnite 3 etc,
participants who already played PC games felt more familiar with the environment.

We analyze the difference in the distribution of the two categories by performing the
Shapiro-Wilk test on the data samples obtained, which can be seen in Table 6.5. The p-value
threshold in this approach was set to 0.05 (as a rule of thumb) which indicates that if the
p-values obtained during the test were less than 0.05, then there is a statistically significant
difference between the scores. As you can see in Table 6.5 the "p-value" parameter has a value
of 0.93, which reveals that there is no statistical evidence that there is a difference between
the distributions.

Table 6.5: Statistics for the test scenario based on participants who play PC Games.

Variable PC Games Min Mean Max Distribution p-value Â12

Level of safety
Yes 0.0 1.74 4.0 0.02e-16 (non-gausian)

0.93 -
No 0.0 1.76 4.0 0.01e-5 (non-gausian)

Level of realism
Yes 0.0 3.74 5.0 0.09e-19 (non-gausian)

0.04-e4 0.65
No 0.0 4.28 5.0 0.01e-10 (non-gausian)

Figure 6.13: The graphs make it very clear that participants who has experience on PC games
felt test scenarios are more realistic than those who don’t play PC games.

Further, we analyze the level of realism perceived by the corresponding participants who
play PC games, as you can see in Figure 6.13. As expected, the level of realism perceived
among participants who play PC games is higher than that among participants who don’t

2https://www.unrealengine.com/en-US
3https://www.epicgames.com/fortnite/en-US/home

https://www.unrealengine.com/en-US
https://www.epicgames.com/fortnite/en-US/home
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Figure 6.14: From the graphs, it seems clear that participants who has experience on PC
Games impacts the level of realism of the test scenarios.

play PC games. To analyze the distribution of the perceived levels of realism among the
participants’ who play PC games, we use the Shapiro-Wilk test of normality to verify that the
distributions we want to verify are mostly non-gaussian in nature, as can be seen in Table 6.5.
Due to this observation, as we can see in Figure 6.14, which yields a significance threshold
(p-value) < 0.04e-4, indicating that the level of realism is statistically significant. We use the
unpaired Wilcoxon test and make use of the Vargha-Delaney effect size metric, Â12 has an
effect size of 0.65. This result reveals to us that the effect size is largely significant, as seen
in Table 5.1. It proves with concrete evidence that participants who play PC games have a
significantly higher perception of realism than participants who don’t play PC games.

6.1.6 Does the participants’ years of experience in test-

ing as any impact on level of safety perception and

realism in SDC test cases?

When we analyze the participants’ years of experience in testing, do they have any effect
on the perceived safety and realistic nature of the test scenarios? Figure 6.15 depicts the
stacked histogram of the proportion of test cases for the level of safety of the participants’
years of experience in testing. When comparing the results, we found that there was no
difference in the proportion. Further, we analyze the difference in the distribution of the two
categories by performing the Shapiro-Wilk test on the data samples obtained, which can be
seen in Table 6.6. The p-value threshold in this approach was set to 0.05 (as a rule of thumb),
which indicates that if the p-values obtained during the test were less than 0.05, then there
is a statistically significant difference between the scores. As you can see in Table 6.6 the
"p-value" parameter has a value of 0.23, which reveals that there is no statistical evidence
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Figure 6.15: From the graphs, it is evident that participant years of experience in testing has
no effect on safety perception.

Table 6.6: Statistics for the test scenario based on participants years of experience in testing.

Variable used VR Min Mean Max Distribution p-value Â12

Level of safety
Yes 0.0 1.88 4.0 0.08e-6 (non-gausian)

0.23 -
No 0.0 1.71 4.0 0.03e-8 (non-gausian)

Level of realism
Yes 0.0 3.87 5.0 0.01e-8 (non-gausian)

0.87 -
No 0.0 3.82 5.0 0.01e-19 (non-gausian)

that there is a difference between the distributions.

Figure 6.16: From the graphs, it is evident that participants who had 5 years and more expe-
rience in testing felt the test scenarios were more realistic.

Further, we analyze the level of realism perceived by the corresponding participants’ years
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of experience in testing, as you can see in Figure 6.16. As expected, the level of realism per-
ceived among participants who had 5 years or more participants years of experience in testing
felt more realistic compared to participants with testing experience of fewer than 5 years. To
analyze the distribution of the perceived levels of realism among the participants’ years of
experience in testing, we analyze the difference in the distribution of the two categories by
performing the Shapiro-Wilk test on the data samples obtained, which can be seen in Table
6.6. The p-value threshold in this approach was set to 0.05 (as a rule of thumb) which indicates
that if the p-values obtained during the test were less than 0.05, then there is a statistically
significant difference between the scores. As you can see in Table 6.4 the "p-value" parameter
has a value of 0.87, which reveals that there is no statistical evidence that there is a difference
between the distributions.

Finding 11. This analysis revealed that the backgrounds of participants can have
a significant impact on the results of SDCs test cases. Participants with prior gaming
experience perceived scenarios to be safer. Participants who were IT experts versus non-
IT experts had already experienced VR, and their level of experience did not affect their
perception of safety.

However, participants with IT expertise, experience playing games or using VR, and
the testing experience felt the test scenarios were more realistic than those who did not.

6.2 Lesson learned on comparing the safety per-

ception of the two control groups of partic-

ipants with one group WITHOUT interaction

and another WITH interaction (RQ4)

As can be seen in the Figure 4.7 we also conducted an additional test scenario in the CARLA
simulator, in which we split the participants into two different control groups (A and B). where
Group A would have the opportunity to interact with the vehicle and Group B would not have
any such opportunity. In this Final Scenario, we fabricated an accident on purpose in order
to observe how participants deal with it and to compare how various control groups with and
without interaction perceived their level of danger.

Figure 6.17 depicts the stacked histogram of the proportion of test cases with test group
with versus without interaction. We observed that the participants’ perception of safety was
slightly higher in people from group A where they could interact with vehicles compare to test
group B where they couldn’t. As Expected participants’ felt safer when they had some kind of
interaction. This provides more concrete evidence on RQ4 ("what is the human perception of
SDC’s test failures/safety when humans can interact with the car?" ) as we observed in Section
5. Observing from the comments, "If i had the control then we could have avoided the crash.
" (P12),"It was safe until the accident. I‘m pretty sure that I could have avoided the accident
if I still have control over the car. " (P30),"Interaction would be nice, but driving into the lamp
post was very unexpected, so maybe I couldn’t prevent it" (P34) Those in group B without
interaction strongly believed they could avoid accidents, demonstrating the significance of
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Figure 6.17: It is clear from the graphs that participants in test Group B (which did not
involve any interaction) experienced a greater feeling of vulnerability on safety compared to
participants in test Group A. (with interaction).

the slight interaction in enhancing safety. These were distinct and inexplicable results, as
none of the automated testing research considers any human interaction, but these results
clearly show how much this impairs overall perceived safety.

Table 6.7: Statistics for the test scenario based on test groups.

Variable Interaction Min Mean Max Distribution p-value Â12

Level of safety
Yes 0.0 0.76 4.0 0.01e-3 (non-gausian)

0.60 -
No 0.0 0.5 4.0 0.06e-4 (non-gausian)

Further, we analyze the distribution of the perceived levels of safety among the partic-
ipants with different test groups, we analyze the difference in the distribution of the two
categories by performing the Shapiro-Wilk test on the data samples obtained, which can be
seen in Table 6.7. The p-value threshold in this approach was set to 0.05 (as a rule of thumb)
which indicates that if the p-values obtained during the test were less than 0.05, then there
is a statistically significant difference between the scores. As you can see in Table 6.7 the
"p-value" parameter has a value of 0.60, which reveals that there is no statistical evidence
that there is a difference between the distributions.

Finding 12. According to the results of the control experiment, the test group with-
out interaction strongly believed that with interaction, they could prevent an intentional
accident. This demonstrates the importance of interaction in testing a self-driving car,
as compared to the test group without interaction. These results were not statistically
significant.
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6.3 Does the safety perception change from a

different view (outside view versus driver’s

view)?

(a) From this graph its clear participants from BeamNG simulator felt more safe
from driver’s view compare to outside car

(b) From this graph its clear participants from CARLA simulator felt more unsafe
from driver’s view compare to outside car

Figure 6.18: Visualization of Safety perception from the outside view versus the driver’s view

As Figure 6.18a depicts the stacked histogram of the proportion of test cases with differ-
ent views (outside view versus driver’s view) on BeamNG simulator, we observed that the
participants’ perception of safety was higher in the driver’s view compared to an outside view
of the car. It is also depicted in the histogram seen in Figure 6.18a, a greater proportion of
participants felt safe or very safe in the same scenario from the driver’s view than from the
car’s outside view.
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Judging from the comment, "The view angle was not the best" (P14) (driver’s view), "Again,
I perceived the bumps and the fact that the car is "behaving" badly, but due to my restricted
point of view, I felt a little bit safer than previously." (P28) (driver’s view),"I put ’neutral’
because i felt it safer than from the outside view. However, the car still went a bit off-road,
especially at the end.c." (P4) (driver’s view), we can see that they felt uncomfortable in the
angle of view in the BeamNG simulator from inside the car compared to outside the car. We
hypothesize that, because BeamNG VR is not a Full VR experience, participants may feel safer
in the outside view.

Additionally, we analyze the distribution of the perceived levels of safety among the par-
ticipants with different views (outside view versus driver’s view), we analyze the difference in
the distribution of the two categories by performing the Shapiro-Wilk test on the data samples
obtained, which can be seen in Table 6.8. The p-value threshold in this approach was set to
0.05 (as a rule of thumb), which indicates that if the p-values obtained during the test were
less than 0.05, then there is a statistically significant difference between the scores. As you
can see in Table 6.7 the "p-value" parameter has a value of 1, which reveals that there is no
statistical evidence that there is a difference between the distributions.

Table 6.8: Statistics for the test scenario based on different views (outside view versus driver’s
view)

Variable view Min Mean Max Distribution p-value Â12

Level of safety BeamNG
outside 0.0 1.23 4.0 0.06e-9 (non-gausian)

1.0 -
driver’s 0.0 1.52 4.0 0.06e-9 (non-gausian)

Level of safety CARLA
outside 0.0 1.71 4.0 0.09e-13 (non-gausian)

1.0 -
driver’s 0.0 1.78 4.0 0.09e-13 (non-gausian)

Further, we analyze the distribution of the perceived levels of safety among the different
views (outside view versus driver’s view) on CARLA simulator, as we see in the Figure 6.18b
depicts the stacked histogram of the proportion of test cases with different views (outside
view versus driver’s view) on CARLA simulator, we observed that the participants’ perception
of safety was higher in the outside view compared to a simulator view of the car. It is also
depicted in the histogram seen in Figure 6.18b, a greater proportion of participants felt safe
or very safe in the same scenario from the outside view than from the car’s driver’s view. The
results are the opposite of what we observed with the BeamNG simulator, demonstrating that
the simulator and view angle on each simulator plays a significant role in how participants
perceive safety. We didn’t find any qualitative comments on these results. Further, we analyze
the distribution of the perceived levels of safety among the participants with different views
(outside view versus driver’s view) on CARLA simulator, and we analyze the difference in the
distribution of the two categories by performing the Shapiro-Wilk test on the data samples
obtained, which can be seen in Table 6.8. The p-value threshold in this approach was set to
0.05 (as a rule of thumb), which indicates that if the p-values obtained during the test were
less than 0.05, then there is a statistically significant difference between the scores. As you
can see in Table 6.7 the "p-value" parameter has a value of 1, which reveals that there is no
statistical evidence that there is a difference between the distributions.
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Finding 13. The results show the view has a drastic impact on safety perception.
As seen BeamNG simulator, participants felt safer from the outside view of the car, and
in CARLA participants felt safer from the driver’s view. This also provides evidence that
results in various bases depending on the simulator and angle of view. This is an important
finding because SBST and SDC researchers only evaluate cars from the outside, and the
results show that human safety perceptions differ from the outside view and the driver’s
perspective.

6.4 Summarizing qualitative aspects from par-

ticipants on the simulators

In the final step of the experiment, we have the participants rate the overall quality of the
simulators (BeamNG and CARLA) as well as the driving performance of the AI-agent.

BeamNG simulator

• Environment: Participants felt the landscape and road design were unrealistic in the
real world. Also, there were no other cars or vehicles, which made the simulation in the
surroundings, with which most of the participants had less resemblance with the real
world. As previous research on SBST [22] and [8] only focused on the ego vehicle for
testing SDCs using BeamNG simulator, future research testing SDCs should focus on
test scenarios involving multiple vehicles.

• Graphics: Some of the participants think that the BeamNG simulator is comparable to
cutting-edge computer games that centre on driving a car; based on the feedback, it
seemed like the graphics were low, and the car was more fictional and rigid. Surpris-
ingly, BeamNG has more realistic physics in practice. Some factors that contributed to
this low level of realism are trivial scenarios with no traffic (other cars, pedestrians),
static objects, etc.

• Obstacles: The obstacles were not placed realistically, and their placement was also
unrealistic. To make the game more realistic, it was suggested that more dynamic ob-
stacles, traffic, and pedestrian be added.

• Driving of AI: Another primary factor that contributes to an unsafe test case in the
BeamNG simulator is a vehicle that veers dangerously close to the roadway’s edge.
The vast majority of participants suggested slowing down and improving artificial in-
telligence’s driving performance in curved sections of the road. Previous research on
SBST [22] and [8] on testing SDCs does not focus on using advanced AI-agent which is
a limitation of BeamNG simulator. In future research testing SDCs, it is better to focus
on the integration of advanced AI for testing SDCs.

6.4.1 CARLA simulator
• Environment: The majority of people who took part responded positively to the city

map, the traffic rules, the city speed limits, and the dynamic weather conditions, all of
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Figure 6.19: The figure of CARLA simulator where the car didn’t stop for stop sign

which contributed to a greater sense of immersion in the scenario on CARLA. However,
some of them thought the physics engine of the car was not as realistic as it should be,
and one of the most noteworthy pieces of feedback/bug we found in CARLA VR with the
dynamic weather was that raindrops came inside the car, which was not as realistic as
it should have been.

• Graphics: CARLA simulator was a full 3D VR experience with a 360◦ view, which was a
huge indication of trust in the simulator. However, there were delays in the animation,
and the latency was not significantly reduced in VR in comparison to CARLA. special VR
with an outside view, but the quality was very low, which affected how the participants
perceived the environment.

• Obstacles: Participants liked CARLA dynamic obstacles like other cars and pedestrians,
but one of the main feedbacks from the participants was that traffic was haltingly slow,
which made the overall experience frustrating.

• Driving of AI: In summary, the AI was much better at driving, but switching lanes was
not very safe and could have caused accidents. The artificial intelligence in the CARLA
simulator didn’t seem to track the stop signs, and the turn signal on the car wasn’t
working when making turns as we can see in the Figures 6.19 and 5.5a. This was one of
the major flaws that we discovered CARLA. The artificial intelligence was unstable when
turning, and in one of the test cases, it went above the roundabout. This occurred for
the majority of the participants.

6.4.2 Participant’ feedback on the experiment
Comments collected from the survey participants mentioned their experiences and sugges-
tions to improve are summaries Table 6.9:
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Table 6.9: What makes the safety perception low for CARLA and BeamNG

Category Description Comments Participants

Limitations of
the AI-agent

Enhance the level of artificial
intelligence that controls the vehicle.

"I think there is a good improvement, things can
be tested in simulation. From the other side,
there are margin to improve the AI driving the
car. I would be happy to take part again on the
study." (P1)

P1

Driving
Confidence in
SDC

There is no longer any confidence in
the driverless car.

"I do not feel comfortable to use a real SDC once.
There are too many misbehaviors and the VR was
not close enough to reality." (P2)

P2, P3, P20

" I already thought before hand self driving cars
are unsafe however now I feel even more that
way. I think there needs to be done much more
research" (P3)
"I can say that self-driving cars still has a lot
of improvements to make to become really safe.
" (P20)
"Self-driving cars are unsafe " (P30)

Raise
awareness of
the Safety of
SDCs

Bring more attention to the issue of
autonomous vehicles and their safety.

"I think it made me more aware of all the differ-
ent scenarios that a car can find in real life.." (P5)

P5, P10, P15,
P19, P21, P30,
P32, P39"I am not yet convienced that SDCs are at a level

where I would sit back and relax" (P8)
"It is very difficult for self driving car to tackle
with real world drivers as they can change their
decision. " (P10)
"I understand that it is difficult for AI to make
steady decisions especially when the pedestrains
are unpredictable. " (P15)
"Made me more skeptical towards it. But the
good thing is that with the failed simulators, the
car can learn lots of different things which would
eventually make it safer. Exciting times ahead.
" (P19)
"I have more respect of it now, I think its not
thta easy to give control over own life a AI, but
still it stayed on the road and followed red lights.
" (P21)
" But it was also seen, that the self driving cars
are not safe yet." (P30)
" Made me understand how many scenarios have
to be faced by the car. And how difficult it is to
design one." (P32)
" I am a strong evangelist for self-driving cars,
becaus I use since 3 years a Tesla. The car
drives on the highway smoother and more se-
cure than myself. Unfortulately FSD is not yet
allowed in Europe, but I am looking forward to
have it." (P39)

Interaction
with the car

"Could have a higher level of control over the in-
teractions " (P12)

P12, P5, P18, P27

"The interactive experiments made me see that
a combination of self-driving AI with human con-
trol could be a way to solve the initial phases of
self-driving cars, until cars are properly trained.
" (P5)
"find the usage of interaction and interesting
idea. " (P18)
"I really appreciated the possibility to interact
with the simulator " (P27)

Raise the level
of complexity

Add more traffic and obstacles to the
game to make the scenarios more
difficult.

"I would suggest to test it with a lot of traffic jams
and using differenct scearios like understanding
if it can recognize ambulance siren and give the
space." (P1)

P1, P22, P31

"I would suggest to make longer scenarios " (P22)
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"The simulations are sometimes too short to get a
feeling for the capabilities of the AI that is driving
the car." (P31)

Experiment
setup

well planned and professional
experiment setup

"The setup done was very professional, all de-
tails were briefed up and all my queries were an-
swered during the experiment. " (P17)

P17, P34, P39, P41

"It is a nice way to learn self driving and experi-
ence driving without being on the road. " (P34)
"The experiment was cool." (P36)
"Great experience and VR usecase is
great." (P39)
"very good testing setup to start withd, full inter-
action would be nice to somewhat overrun the AI
driver in critical scenarios." (P41)

6.4.3 Lessons Learned

As indicated in section 5, incorporating humans into the testing process helps to improve
both the level of confidence in SDCs as well as the quality of the test case. One of the most
important findings was that the participants’ confidence levels increased as a direct result of
the interaction that took place in the vehicle. Which answer the RQ4 will clear evidence as
shown in Table 5.10 with a p-value > 0.001. When we did the further investigation on how
the participant’s background influences their perceived safety in Section 6.1 we saw that age
plays an important role. in how realistic the simulators are. Participants in the age group
18–30 felt simulators. were more realistic than those who were older than 30 years. Other
factors also affect the safety perception of SDCs scenarios for the participants who, as IT
versus non-IT experts, had already used VR, and their level of experience didn’t influence
their perception of safety. Gender, IT versus non-IT expertise, VR usage, gamers, and level of
experience have a significant impact on the realism of the test scenario.

Using VR in SDC revealed a variety of additional difficulties. During the course of our
experiment, we had some participants who experienced motion sickness, as well as first-time
VR users who reported feeling lightheaded and having the requirement to take extended
breaks between simulations. which would make it useful for future researchers to consider
this aspect, improve the graphics with simulators, set up the experiment with longer breaks,
and give more warm-up scenarios so that the user can get used to the VR before real-life
scenarios.

In order to obtain objective results from the SDCs experiment, it is crucial to diversify
the test group. When we ask participants Question: "Did this experiment change the way
you thought about the Self-driving Cars safety?" 39% (Yes), 41% (No), and 19% (Maybe), you
can find further qualitative feedback on Table 6.9 . In summary, the majority of participants
believe that SDC-Alabaster is closely associated with human perceptions of SDC test failures
and safety and that the SDC test case is somewhat relevant to the real world.
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Threat to Validity

Internal Validity. Threats to internal validity may concern, as for previous work [8,21], the
cause-and-effect relationships between the technologies used to generate the scenarios and
their components and the corresponding outcomes, which are dependent on the realism of
our scenarios. Indeed, in the BeamNG simulator we did not recreate every element, especially
dynamic objects, found on actual roads (traffic, pedestrians, etc.). To increase our internal
validity, we used the CARLA simulator, which has dynamic objects such as weather, traffic,
pedestrians, etc., to simulate a realistic environment.

Another threat is a potential bias of the result, as some of the participants were using
VR for the first time, and a few of them have little experience of evaluating critical driving
scenarios; hence, the participant’s perception of safety could be biased. To reduce this bias,
we recruited participants from a variety of fields and experiences, as shown in Table 4.2,
and provided them with warm-up test scenarios so they could become accustomed to the
environment; the results of the warm-up round were not included in our analysis.

Although BeamNG and CARLA have different roads, we use the same automatically gen-
erated tests as we see in the section in 3.2, which were developed for the BeamNG simulator
and not for CARLA, so there may be differences in the roads’ features and attributes between
the two simulators, which might lead to different test case outcomes. For future work, we
intend to create a road and test case that can be used in both simulators and is therefore
generalized.

We also use different AI agents for BeamNG and CARLA, which may have vastly different
driving and traffic management characteristics. For future work, we plan to change SDC-
Alabaster and generalize the AI agent so that future researchers and practitioners can inte-
grate any AI agent and utilize SDC-Alabaster for automated testing of their SDCs.

External Validity. Finally, threats to external validity might be the low number of partic-
ipants, as we had 41 participants in our experiment, and there could be gender bias because
of the unequal distribution of participants (men: 31, female: 10), as we saw in the discussion
section 6.1.2. Furthermore, most of the participants have experience in computer science or
related fields, as we can see in Table 9.2, so the population was not diverse and there could
be uncontrolled confounding variables biasing the results. We will overcome this threat by
planning to conduct more experiments with people of diverse backgrounds.

In scenarios, we use a flat 2D plane. We do not take into account Z-coordinates, which
would be more realistic and produce more generalizable results.

Our findings cannot be generalized to the entire universe of open-source CPS simulation
environments in other domains. Consequently, additional replications and studies incorporat-
ing additional data and other CPS domains are desirable.
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Conclusion and Future Work

Automated Testing Self-driving cars are challenging due to the lack of human feedback and
loss of confidence. To overcome this, we introduced human-in-the-loop simulation-based test-
ing for self-driving cars, called SDC-Alabaster, which generated test scenarios with static and
dynamic objects and executed the test in the BeamNG and CARLA SDC simulation environ-
ments. The SDC-Alabaster also supports the visualization of simulated test scenarios in a VR
headset, allowing humans to feel more immersed in the SDCs.

In order to answer our technical research question, we implemented static objects like
road bumps, trees, and cylinders in BeamNG simulator and dynamic traffic (other cars, pedes-
trians), as well as dynamic weather in CARLA simulator(RQ1). We integrated both BeamNG
and CARLA simulators with a VR headset. BeamNG does not support VR, so we used an
external driver to convert the experience into a VR format(RQ2).

To address RQ3 and RQ4, we conducted a controlled experiment with 41 participants from
diverse backgrounds and experiences. The experiment lasted a maximum of one hour and
included various tests in BeamNG and CARLA simulators with a different view (outside car
and driving view), with and without a VR headset, as well as test scenarios with vehicle
interaction.

Our findings from the experiment show that SDC-Alabaster case classification (pass/fail)
closely resembles the human perception of SDCs’ test failures/safety (RQ3), and perceptions
of safety and realism vary with the simulating environment (i.e., with or without VR). In addi-
tion, we discovered that the failure cases that are most important to tests are perceived as less
realistic (RQ3). Our results show the perception of realism and safety among users is signifi-
cantly dependent on the presence of obstacles in the given scenario. With a p-value>0.64e-8,
the distribution is 56%(Â12) statically different for the perception of realism, and with a p-
value>0.2e-37, the distribution is 100%(Â12) statically different for the perception of safety.
Our results also show Carla was more realistic and safer than BeamNG because participants
found CARLA’s scenarios more realistic with a p-value> 0.01e-16, the distribution is 85%(Â12)
statically different, and for safety with a p-value> 0.05e-10, the distribution is 68%(Â12) stat-
ically different(RQ3). We also found that interactions with cars make humans feel safer com-
pared to when there is no interaction. We also found that interactions with vehicles make
humans safer compared to when there is no interaction; with statistical evidence of a p-value
> 0.001, the distribution is 36%(Â12 ) statistically different (RQ4). In addition, we discovered
that the age, gender, field of expertise, previous use of virtual reality, computer gaming expe-
rience, and the number of years of testing experience of the participants all play a significant
role in the level of safety and perception of realism.
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8.1 Future Work

Future work will be directed in various directions. Here are some future work suggestions,
some of which are based on the experiment’s results:

• (i) Voice feedback in VR: To enhance human interaction with a car using a VR headset
by incorporating voice-command feedback and the user’s ability to provide feedback and
control the vehicle without removing the VR headset.

• (ii) Training model with a generated dataset: We will generate a large number of
datasets that could be used to train the AI model and enhance the AI-agents of SDCs
based on the feedback and interaction with the test scenario.

• (iii) Generate dynamic roads and maps in CARLA: We have seen that the BeamNG
simulator allows us to dynamically create roads; accordingly, we would like the CARLA
simulator to also allow us to generate and integrate dynamic maps and roads.

• (iv) Improve the AI-agent traffic cars: The post-survey responses of the participants
provided us with feedback to improve the CARLA traffic simulator’s AI-agent for other
vehicles. One of the objectives of future research is to implement AI-adaptive traffic
vehicles.

• (v) Integrate participants’ driving: To integrate human driving to simulate and repli-
cate human-based experimentation and to use test scenarios to compare the results of
participant driving and AI-agent driving. In addition, the test scenario should use actual
roads.

• (v) Recognize "STOP" sign: In our experiment, we found the CARLA AI-agent doesn’t
recognize "STOP" signs, which was a major finding and drawback of CARLA simulator.
For future work to fix the AI-agent to recognize signs and other traffic signs.

Also, we aim to replicate the study by involving additional participants from diverse back-
grounds.
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Appendices

9.1 Additional data on the participant

In this section, we may observe all additional data about participants that will not be consid-
ered for results analysis.

Figure 9.1: This graph demonstrates that the majority of participants were trying SDC for the
first time.
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Table 9.1: Summarizes participants with which type of vehicle drive and how many years of
driving experience they have

Vehicle driven
Years of driving experience

Total

less than one year 1-2 years 3-6 years 6-10 years >10 years

2 wheelers (Motorbikes) 2 - 3 - - 5
2 wheelers (Motorbikes), 4 wheelers (light-
duty vehicles like cars and vans)

- 2 4 3 3 12

4 wheelers (light-duty vehicles like cars and
vans)

- 2 9 3 7 21

4 wheelers (light-duty vehicles like cars and
vans), 4> Wheelers(heavy-duty vehicles like
trucks, buses, and coaches)

- - 1 - 1 10

None 1 - - - - 1

Total 3 4 17 6 11 41

Figure 9.2: This graph clearly shows most of the participants have some kind of experience
driving.



Bibliography

[1] R. B. Abdessalem, A. Panichella, S. Nejati, L. C. Briand, and T. Stifter. Testing autonomous
cars for feature interaction failures using many-objective search. In M. Huchard, C. Käst-
ner, and G. Fraser, editors, Proceedings of the 33rd ACM/IEEE International Conference
on Automated Software Engineering, ASE 2018, Montpellier, France, September 3-7,
2018, pages 143–154. IEEE, ACM, 2018.

[2] A. Afzal, D. S. Katz, C. L. Goues, and C. S. Timperley. A study on the challenges of using
robotics simulators for testing. arXiv preprint arXiv:2004.07368, 2020.

[3] M. Althoff, M. Koschi, and S. Manzinger. Commonroad: Composable benchmarks for
motion planning on roads. In IEEE Intelligent Vehicles Symposium, IV 2017, Los Angeles,
CA, USA, June 11-14, 2017, pages 719–726. IEEE, 2017.

[4] BeamNG.research. BeamNGpy. https://github.com/BeamNG/BeamNGpy. Accessed:
2020-08-10.

[5] BeamNG.tech. Beamng.research. https://documentation.beamng.com/beamng_tech/.
Accessed: 2022-07-31.

[6] L. P. Berg and J. M. Vance. Industry use of virtual reality in product design and manufac-
turing: a survey. Virtual Real., 21(1):1–17, 2017.

[7] C. Birchler, N. Ganz, S. Khatiri, A. Gambi, and S. Panichella. Cost-effective simulation-
based test selection in self-driving cars software. arXiv preprint arXiv:2211.11409, 2022.

[8] C. Birchler, N. Ganz, S. Khatiri, A. Gambi, and S. Panichella. Cost-effective simulation-
based test selection in self-driving cars software with sdc-scissor. In 29th IEEE In-
ternational Conference on Software Analysis, Evolution, and Reengineering, Honolulu,
USA (online), 15-18 March 2022. ZHAW Zürcher Hochschule für Angewandte Wis-
senschaften, 2022.

[9] C. Birchler, S. Khatiri, P. Derakhshanfar, S. Panichella, and A. Panichella. Automated
test cases prioritization for self-driving cars in virtual environments. arXiv preprint
arXiv:2107.09614, 2021.

[10] C. Birchler, S. Khatiri, P. Derakhshanfar, S. Panichella, and A. Panichella. Single and
multi-objective test cases prioritization for self-driving cars in virtual environments. ACM
Trans. Softw. Eng. Methodol., apr 2022. Just Accepted.

https://github.com/BeamNG/BeamNGpy
https://documentation.beamng.com/beamng_tech/


94 BIBLIOGRAPHY

[11] D. Bogdoll, S. Orf, L. Töttel, and J. M. Zöllner. Taxonomy and survey on remote human
input systems for driving automation systems. In K. Arai, editor, Advances in Information
and Communication, pages 94–108, Cham, 2022. Springer International Publishing.

[12] Carla. carla. https://github.com/carla-simulator/carla/tree/master/PythonAPI.
Accessed: 2022-11-07.

[13] E. Castellano, A. Cetinkaya, C. H. Thanh, S. Klikovits, X. Zhang, and P. Arcaini. Frenetic
at the SBST 2021 tool competition. In 14th IEEE/ACM International Workshop on Search-
Based Software Testing, SBST 2021, Madrid, Spain, May 31, 2021, pages 36–37. IEEE,
2021.

[14] E. Castellano, S. Klikovits, A. Cetinkaya, and P. Arcaini. Freneticv at the sbst 2022 tool
competition. In 2022 IEEE/ACM 15th International Workshop on Search-Based Software
Testing (SBST), pages 47–48, 2022.

[15] M. S. Corporation. Carsim adas: Moving objects and sensors. https://www.carsim.
com/products/supporting/objects_sensors/index.php. Accessed: 2022-08-20.

[16] P. Daignault and P. Delhomme. Attitudes des jeunes automobilistes à l’égard des
principales actions contre l’insécurité routière en france. Pratiques Psychologiques,
17(4):373–389, 2011.

[17] M. Dalboni and A. Soldati. Soft-body modeling: A scalable and efficient formulation for
control-oriented simulation of electric vehicles. In IEEE Transportation Electrification
Conference and Expo (ITEC), pages 1–6, 2019.

[18] M. R. Desselle, R. A. Brown, A. R. James, M. J. Midwinter, S. K. Powell, and M. A.
Woodruff. Augmented and virtual reality in surgery. Computing in Science Engineer-
ing, 22(3):18–26, 2020.

[19] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun. CARLA: An open urban
driving simulator. In Proceedings of the 1st Annual Conference on Robot Learning, pages
1–16, 2017.

[20] A. Dosovitskiy, G. Ros, F. Codevilla, A. M. López, and V. Koltun. CARLA: an open urban
driving simulator. In 1st Annual Conference on Robot Learning, CoRL 2017, volume 78
of Proceedings of Machine Learning Research, pages 1–16. PMLR, 2017.

[21] A. Gambi, T. Huynh, and G. Fraser. Generating effective test cases for self-driving cars
from police reports. In M. Dumas, D. Pfahl, S. Apel, and A. Russo, editors, Proceedings of
the ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, ESEC/SIGSOFT FSE 2019, Tallinn, Estonia,
August 26-30, 2019, pages 257–267. ACM, 2019.

[22] A. Gambi, G. Jahangirova, V. Riccio, and F. Zampetti. SBST tool competition 2022. In
15th IEEE/ACM International Workshop on Search-Based Software Testing, SBST@ICSE
2022, Pittsburgh, PA, USA, May 9, 2022, pages 25–32. IEEE, 2022.

[23] A. Gambi, M. Mueller, and G. Fraser. Asfault: Testing self-driving car software using
search-based procedural content generation. In 2019 IEEE/ACM 41st International Con-
ference on Software Engineering: Companion Proceedings (ICSE-Companion), pages
27–30, 2019.

https://github.com/carla-simulator/carla/tree/master/PythonAPI
https://www.carsim.com/products/supporting/objects_sensors/index.php
https://www.carsim.com/products/supporting/objects_sensors/index.php


BIBLIOGRAPHY 95

[24] A. Gambi, M. Mueller, and G. Fraser. Automatically Testing Self-Driving Cars with
Search-Based Procedural Content Generation, page 318–328. Association for Computing
Machinery, New York, NY, USA, 2019.

[25] A. Gambi, M. Mueller, and G. Fraser. Automatically testing self-driving cars with search-
based procedural content generation. In Proceedings of the 28th ACM SIGSOFT Inter-
national Symposium on Software Testing and Analysis, ISSTA 2019, page 318–328, New
York, NY, USA, 2019. Association for Computing Machinery.

[26] C. A. González, M. Varmazyar, S. Nejati, L. C. Briand, and Y. Isasi. Enabling model
testing of cyber-physical systems. In Proceedings of the 21th ACM/IEEE International
Conference on Model Driven Engineering Languages and Systems, MODELS ’18, page
176–186, New York, NY, USA, 2018. Association for Computing Machinery.

[27] G. Grano, A. Ciurumelea, S. Panichella, F. Palomba, and H. C. Gall. Exploring the integra-
tion of user feedback in automated testing of android applications. In 2018 IEEE 25th
International Conference on Software Analysis, Evolution and Reengineering (SANER),
pages 72–83, 2018.

[28] R. Gutiérrez-Moreno, R. Barea, E. L. Guillén, J. Araluce, and L. M. Bergasa. Reinforce-
ment learning-based autonomous driving at intersections in CARLA simulator. Sensors,
22(21):8373, 2022.

[29] HTC. Htc vive pro 2. https://vive.com/us/product/vive-pro2/overview/. Accessed:
2022-11-22.

[30] C. G. Huélamo, J. del Egido, L. M. Bergasa, R. Barea, E. L. Guillén, J. F. Arango, J. Ar-
aluce, and J. López. Train here, drive there: ROS based end-to-end autonomous-driving
pipeline validation in CARLA simulator using the NHTSA typology. Multim. Tools Appl.,
81(3):4213–4240, 2022.

[31] D. Humeniuk, G. Antoniol, and F. Khomh. Ambiegen tool at the sbst 2022 tool competi-
tion. In 2022 IEEE/ACM 15th International Workshop on Search-Based Software Testing
(SBST), pages 43–46, 2022.

[32] S. Int. Org. Standardization Geneva. Road vehicles - safety and cybersecurity for auto-
mated driving systems - design, verification and validation. ISO, 2020.

[33] N. Kalavas. Human feedback could help in the a.i. of self-driving cars. https://www.
y-mobility.co.uk/human-feedback-could-help-in-the-artificial-intelligence-ai-of-self-driving-cars/.
Accessed: 2022-05-08.

[34] P. Kaur, S. Taghavi, Z. Tian, and W. Shi. A survey on simulators for testing self-driving
cars. In 2021 Fourth International Conference on Connected and Autonomous Driving
(MetroCAD), pages 62–70, 2021.

[35] S. Khatiri, C. Birchler, B. Bosshard, A. Gambi, and S. Panichella. Machine learning-based
test selection for simulation-based testing of self-driving cars software. arXiv preprint
arXiv:2111.04666, 2021.

[36] N. Koenig and A. Howard. Design and use paradigms for gazebo, an open-source multi-
robot simulator. In 2004 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS) (IEEE Cat. No.04CH37566), volume 3, pages 2149–2154 vol.3, 2004.

https://vive.com/us/product/vive-pro2/overview/
https://www.y-mobility.co.uk/human-feedback-could-help-in-the-artificial-intelligence-ai-of-self-driving-cars/
https://www.y-mobility.co.uk/human-feedback-could-help-in-the-artificial-intelligence-ai-of-self-driving-cars/


96 BIBLIOGRAPHY

[37] P. Koopman and W. Michael. Challenges in autonomous vehicle testing and validation.
SAE International Journal of Transportation Safety, 2016.

[38] C. Law. Driverless car accidents – who’s at fault? https://www.natlawreview.com/
article/driverless-car-accidents-who-s-fault. Accessed: 2022-04-23.

[39] E. A. Lee. Cyber physical systems: Design challenges. In 2008 11th IEEE Interna-
tional Symposium on Object and Component-Oriented Real-Time Distributed Computing
(ISORC), pages 363–369, 2008.

[40] L. Li, W. Huang, Y. Liu, N. Zheng, and F. Wang. Intelligence testing for autonomous
vehicles: A new approach. IEEE Transactions on Intelligent Vehicles, 1(2):158–166,
2016.

[41] A. Loquercio, E. Kaufmann, R. Ranftl, A. Dosovitskiy, V. Koltun, and D. Scaramuzza. Deep
drone racing: From simulation to reality with domain randomization. IEEE Transactions
on Robotics, 36(1):1–14, 2020.

[42] J.-L. Martin, S. Lafont, M. Chiron, B. Gadegbeku, and B. Laumon. Différences entre
les hommes et les femmes face au risque routier. Revue d’Épidémiologie et de Santé
Publique, 52(4):357–367, 2004. “Genres et Santé”.

[43] J. Mesit and R. K. Guha. A general model for soft body simulation in motion. In Proceed-
ings of the 2011 Winter Simulation Conference (WSC), pages 2685–2697, 2011.

[44] O. Michel. Cyberbotics ltd. webots™: Professional mobile robot simulation. International
Journal of Advanced Robotic Systems, 1(1):5, 2004.

[45] T. Mikkonen, K. Kemell, P. Kettunen, and P. Abrahamsson. Exploring virtual reality
as an integrated development environment for cyber-physical systems. In M. Staron,
R. Capilla, and A. Skavhaug, editors, 45th Euromicro Conference on Software Engineer-
ing and Advanced Applications, SEAA 2019, Kallithea-Chalkidiki, Greece, August 28-30,
2019, pages 121–125. IEEE, 2019.

[46] T. Mikkonen, K.-K. Kemell, P. Kettunen, and P. Abrahamsson. Exploring virtual reality as
an integrated development environment for cyber-physical systems. In 2019 45th Eu-
romicro Conference on Software Engineering and Advanced Applications (SEAA), pages
121–125, 2019.

[47] S. Nair, S. Shafaei, D. Auge, and A. C. Knoll. An evaluation of "crash prediction networks"
(CPN) for autonomous driving scenarios in CARLA simulator. In H. Espinoza, J. A. McDer-
mid, X. Huang, M. Castillo-Effen, X. C. Chen, J. Hernández-Orallo, S. Ó. hÉigeartaigh, and
R. Mallah, editors, Proceedings of the Workshop on Artificial Intelligence Safety 2021
(SafeAI 2021) co-located with the Thirty-Fifth AAAI Conference on Artificial Intelligence
(AAAI 2021), Virtual, February 8, 2021, volume 2808 of CEUR Workshop Proceedings.
CEUR-WS.org, 2021.

[48] M. Online. Autopilot fail! moment driverless tesla being summoned by
owner across washington air field crashes into 2m private jet and keeps go-
ing even after collision. https://www.dailymail.co.uk/news/article-10745095/
Moment-driverless-Tesla-summoned-owner-Washington-air-field-crashes-2m-jet.
html. Accessed: 2022-04-23.

https://www.natlawreview.com/article/driverless-car-accidents-who-s-fault
https://www.natlawreview.com/article/driverless-car-accidents-who-s-fault
https://www.dailymail.co.uk/news/article-10745095/Moment-driverless-Tesla-summoned-owner-Washington-air-field-crashes-2m-jet.html
https://www.dailymail.co.uk/news/article-10745095/Moment-driverless-Tesla-summoned-owner-Washington-air-field-crashes-2m-jet.html
https://www.dailymail.co.uk/news/article-10745095/Moment-driverless-Tesla-summoned-owner-Washington-air-field-crashes-2m-jet.html


BIBLIOGRAPHY 97

[49] S. Panichella, A. Gambi, F. Zampetti, and V. Riccio. Sbst tool competition 2021. In
2021 IEEE/ACM 14th International Workshop on Search-Based Software Testing (SBST),
pages 20–27, 2021.

[50] N. Rajabli, F. Flammini, R. Nardone, and V. Vittorini. Software verification and validation
of safe autonomous cars: A systematic literature review. IEEE Access, 9:4797–4819,
2021.

[51] R. Rajkumar, I. Lee, L. Sha, and J. Stankovic. Cyber-physical systems: The next comput-
ing revolution. In Design Automation Conference, pages 731–736, 2010.

[52] V. Riccio and P. Tonella. Model-based exploration of the frontier of behaviours for deep
learning system testing. In Proceedings of the ACM Joint European Software Engineer-
ing Conference and Symposium on the Foundations of Software Engineering, ESEC/FSE
’20, page 13 pages. Association for Computing Machinery, 2020.

[53] E. Rohmer, S. P. N. Singh, and M. Freese. V-rep: A versatile and scalable robot simula-
tion framework. In 2013 IEEE/RSJ International Conference on Intelligent Robots and
Systems, pages 1321–1326, 2013.

[54] G. Rong, B. H. Shin, H. Tabatabaee, Q. Lu, S. Lemke, M. Možeiko, E. Boise, G. Uhm,
M. Gerow, S. Mehta, E. Agafonov, T. H. Kim, E. Sterner, K. Ushiroda, M. Reyes, D. Ze-
lenkovsky, and S. Kim. Lgsvl simulator: A high fidelity simulator for autonomous driv-
ing. In 2020 IEEE 23rd International Conference on Intelligent Transportation Systems
(ITSC), pages 1–6, 2020.

[55] R. Satava. Medical applications of virtual reality. J Med Syst 19, 1995.

[56] E. Seedhouse. Presence within the virtual reality environment of the international space
station. Virtual Reality 2022, 2022.

[57] S. Sontges and M. Althoff. Computing the drivable area of autonomous road vehicles in
dynamic road scenes. IEEE Trans. Intell. Transp. Syst., 19(6):1855–1866, 2018.

[58] T. Stolte, S. Ackermann, R. Graubohm, I. Jatzkowski, B. Klamann, H. Winner, and M. Mau-
rer. Taxonomy to unify fault tolerance regimes for automotive systems: Defining fail-
operational, fail-degraded, and fail-safe. IEEE Transactions on Intelligent Vehicles,
7(2):251–262, 2022.

[59] T. N. Y. Times. 2 killed in driverless tesla car crash, officials say. https://www.nytimes.
com/2021/04/18/business/tesla-fatal-crash-texas.html. Accessed: 2022-04-23.

[60] P. Tonella. Evolutionary testing of classes. In G. S. Avrunin and G. Rothermel, editors,
Proceedings of the ACM/SIGSOFT International Symposium on Software Testing and
Analysis, ISSTA 2004, Boston, Massachusetts, USA, July 11-14, 2004, pages 119–128.
ACM, 2004.

[61] Unreal. Unreal engine technologies. https://www.unrealengine.com/. Accessed:
2022-08-20.

[62] A. S. Vempati, H. Khurana, V. Kabelka, S. Flueckiger, R. Siegwart, and P. Beardsley.
A virtual reality interface for an autonomous spray painting uav. IEEE Robotics and
Automation Letters, 4(3):2870–2877, 2019.

https://www.nytimes.com/2021/04/18/business/tesla-fatal-crash-texas.html
https://www.nytimes.com/2021/04/18/business/tesla-fatal-crash-texas.html
https://www.unrealengine.com/


98 BIBLIOGRAPHY

[63] T. washington post. Tesla driver faces felony charges in fatal crash involv-
ing autopilot. https://www.washingtonpost.com/technology/2022/01/20/
tesla-autopilot-charges/. Accessed: 2022-04-23.

[64] Waymo. Waymo safety report. https://storage.googleapis.com/waymo-uploads/
files/documents/safety/2021-12-waymo-safety-report.pdf. Accessed: 2022-10-24.

[65] J. Wu, Z. Huang, C. Huang, Z. Hu, P. Hang, Y. Xing, and C. Lv. Human-in-the-loop deep
reinforcement learning with application to autonomous driving. CoRR, abs/2104.07246,
2021.

[66] R. V. Yampolskiy. Unpredictability of ai, 2019.

[67] D. Yeo, G. Kim, and S. Kim. Toward immersive self-driving simulations: Reports from a
user study across six platforms. In Proceedings of the 2020 CHI Conference on Human
Factors in Computing Systems, CHI ’20, page 1–12, New York, NY, USA, 2020. Associa-
tion for Computing Machinery.

[68] O. Yildirim, C. Pidel, and M. West. Future mobility solutions: A use case for under-
standing how vr influences user perception. In 2020 IEEE International Conference on
Artificial Intelligence and Virtual Reality (AIVR), pages 184–187, 2020.

[69] A. Yoganandhan, S. Subhash, J. Hebinson Jothi, and V. Mohanavel. Fundamentals and
development of self-driving cars. Materials Today: Proceedings, 33:3303–3310, 2020.
International Conference on Nanotechnology: Ideas, Innovation and Industries.

[70] H. Yoshitake, K. Futawatari, and M. Shino. A vr-based simulator using motion feedback
of a real powered wheelchair for evaluation of autonomous navigation systems. In 13th
International Conference on Automotive User Interfaces and Interactive Vehicular Appli-
cations, AutomotiveUI ’21 Adjunct, page 26–29, New York, NY, USA, 2021. Association
for Computing Machinery.

[71] E. Zapridou, E. Bartocci, and P. Katsaros. Runtime verification of autonomous driving
systems in carla. In J. Deshmukh and D. Ničković, editors, Runtime Verification, pages
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