
Supporting Newcomers in Software
Development Projects

Doctoral Dissertation
by

Sebastiano Panichella

Under the supervision of:

Prof. Massimiliano Di Penta
Prof. Gerardo Canfora

July 2014

1

Newcomer Learning Path…

2

3

Newcomer Learning Path…

Data Extraction

• Versioning Systems
• Mailing Lists
• Issue trackers
• Q&A site (e.g. StackOverflow)

4

Newcomer Learning Path…

Data Extraction

Empirical Studies

• Versioning Systems
• Mailing Lists
• Issue trackers
• Q&A site (e.g. StackOverflow)

5

Newcomer Learning Path…

Data Extraction

Recommenders

• Versioning Systems
• Mailing Lists
• Issue trackers
• Q&A site (e.g. StackOverflow)

Empirical Studies

6

Newcomer Learning Path…

Data Extraction

Recommenders

Studies

Newcomer Training Process:

7

Data Extraction

Recommenders

Mentoring

Studies

8

1) Recommend Mentors

Newcomer Training Process:

Data Extraction

Recommenders
1) Recommend Mentors

Studies

2) Supporting Source Code
Comprehension and
Re-documentation

2) Analyze Software Artifacts:
c) investigate how newcomers browse artifacts software
d) investigate how newcomers generate source code summaries

Perform Development TasksMentoring

9

Newcomer Training Process:

1) Recommend Mentors

Studies

3) Recommend Refactoring

2) Supporting Source Code
Comprehension and
Re-documentation

Perform Development TasksMentoring

Data Extraction

Recommenders

Team Collaborations

10

2) Analyze Software Artifacts:
c) investigate how newcomers browse artifacts software
d) investigate how newcomers generate source code summaries
3) Analyze developers:
c) social activity
d) technical activity

Newcomer Training Process:

1) Recommend Mentors

3) Analyze developers:
c) social activity
d) technical activity

Studies

3) Recommend Refactoring

2) Supporting Source Code
Comprehension and
Re-documentation

Perform Development TasksMentoring

Data Extraction

Recommenders

Team Collaborations

2) Analyze Software Artifacts:
c) generate source code summaries
d) support maintenance tasks

11

Newcomer Training Process:

Thesis Structure

• PART I : analyzing data from software repositories to support team
work.

• rs developers and support the team work.
• PART II : analyzing how developers use software artifacts to help

newcomers in program comprehension task. Si
• on ta
• sk.
• PART III : developing recommenders to support concretely project

newcomers

12

• PART I: analyzing data from software repositories to support team
work.

• rs developers and support the team work.
• PART II : analyzing how developers use software artifacts to help

newcomers in program comprehension task. Si
• on ta
• sk.
• PART III : developing recommenders to support concretely project

newcomers

13

Thesis Structure

• PART I: analyzing data from software repositories to support team
work.

• rs developers and support the team work.
• PART II: analyzing how developers use software artifacts to help

newcomers in program comprehension task. Si
• on ta
• sk.
• PART III : presents recommenders to support concretely project

newcomers

14

Thesis Structure

• PART I: analyzing data from software repositories to support team
work.

• rs developers and support the team work.
• PART II: analyzing how developers use software artifacts to help

newcomers in program comprehension task. Si
• on ta
• sk.
• PART III: developing recommenders to support concretely project

newcomers.

15

Thesis Structure

PART I

Analysis of Developers’
Communication

16

Team
1

Team
2

Team
n

...

New Features
Bugs fixing

...................

...................

...................

Emerging Teams in
Open Source Projects

https://code.google.com/p/gource/

17

Socio-Technical Congruence in
Developers Social Networks

Bird et al. - FSE 2008

19

How Developers’ Collaborations Networks Identified
from Different Sources Differ?

IRC CHAT LOG

VERSIONING SYSTEM

ISSUE TRACKER
MAILING LIST

Sebastiano Panichella, Gabriele Bavota, Massimiliano Di Penta, Gerardo Canfora, Giuliano Antoniol
How Developers’ Collaborations Identified from Different Sources Tell us About Code Changes.
The 30th International Conference on Software Maintenance and Evolution (IEEE ICSME 2014) 20

Example: Hibernate OSS Project

21

How Developers’ Collaborations Networks Identified
from Different Sources Differ?

Developers Overlap between
Different Sources

Apache Httpd

Apache Lucene

Samba

Hibernate

ISSUE and CHAT
ISSUE and MAIL

<
35% 56%

MAIL and CHAT
MAIL and ISSUE

<
50%

86%

22

Overlap of Developers Social Links

ISSUE and CHAT
ISSUE and MAIL

<
26% 38%

MAIL and CHAT
MAIL and ISSUE

<
20%

30%

23

Apache Httpd

Apache Lucene

Samba

Hibernate

During an IRC Chat Meeting

PROJECT: Hibernate

“is there a better way?
dunno like I said this is
brainstorming and I have
not given lots of thought to
these cases”

“but we also need to
create the attributes

and values in
the entity binding..”

24

PROJECT: Hibernate

“is there a better way?
dunno like I said this is
brainstorming and I have
not given lots of thought to
these cases”

1) Brainstorming

25

“however planning
a pure standalone

test suite would
make things

easier...”

During an IRC Chat Meeting

PROJECT: Hibernate

“is there a better way?
dunno like I said this is
brainstorming and I have
not given lots of thought to
these cases”

“however planning
a pure standalone

test suite would
make things

easier...”

1) Brainstorming
2) Planning

(e.g. Testing
activities)

26

During an IRC Chat Meeting

PROJECT: Hibernate

“okay I think it is a bug
and I’m going to create
a jira first”

“however planning
a pure standalone

test suite would
make things

easier...”

1) Brainstorming
2) Planning

(e.g. Testing
activities)

3) Open an
Issue

27

During an IRC Chat Meeting

0%

20%

40%

20%

20%

40%

60%

60%

60%

60%

60%

80%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

Leaders

Leaders

Leaders

Leaders

Ap
ac

he
HT

TP
D

Ap
ac

he
Lu

ce
ne

Hi
be

rn
at

e
Sa

m
ba

Precision in Recommending Leaders

MAIL ISSUE CHAT

Use Issue, Chat and Mail to
Identify Leaders

30

Analysis of the Evolution
of Teams: Why?

1) To Better Understand the Reasons
Behind the Teams Reorganization

(split/merge of developers teams)

2) Investigate whether Emerging Teams Evolve with
the aim of Working on more Cohesive Groups of Files.
Than Support Re-factoring, Remodulation.

Sebastiano Panichella, Gerardo Canfora, Massimiliano Di Penta, Rocco Oliveto:
How the evolution of emerging collaborations relates to code changes: an empirical study.
The 22nd International Conference on Program Comprehension (IEEE ICPC 2014)

31

By use FUZZY
CLUSTER ALGORITHMS

Teams Identification from Emergent Collaborations

32

Analysis of the Evolution
of Teams: How?

TEAMS SPLIT

TEAMS MERGE

R1

By use FUZZY
CLUSTER ALGORITHMS

R2

33

Analysis of the Evolution
of Teams: How?

R1

R2

By use FUZZY
CLUSTER ALGORITHMS

Sub-system one Sub-system twoSub-systems two

Sub-Systems where Developers Working on....

Mancoridis et al.
Modul. Quality

Poshyvanyk et al.
CCBC

Structure
Persprective

Conceptual
Persprective

34

Analysis of the Evolution
of Teams: How?

Apache HTTP Eclipse JDT Netbeans Samba

Period
considered 09/1998-03/2012 01/2002-

12/2011
01/2001-
08/2012 01/2000-09/2011

Releases
Considered

2.0
2.2.0
2.2.4
2.2.12
2.4.1

3.0
3.2
3.4
3.6
4.2

3.4
3.6
5.5
6.9
7.2

2.3
3.0.20
3.0.25
3.5.0
4.0

Systems characteristics: Period of Time and Releases Considered

Case Study

• Goal: analyze data from mailing lists/issue trackers and
versioning systems

• Purpose: observe the reorganization of the teams
between releases

• Quality focus: better understand the reason behind the
reorganization of teams

35

Teams Merge in a New Release:
- in 20%-35% of the

cases

Teams Split in a New Release:
- In 15%-35% of the

cases

How do Emerging Collaborations Change across
Software Releases?

Teams Disappeared:
22%-45%

Teams Survived:
50%-70%

36

Analysis of Developers’
Communication

1) Social network recommenders should not limit their information mining
a single source.

2) Issue and mail can be used to identify leaders with high accuracy.

3) Social interaction between developers can be used to building better
recommenders for software re-modularization or refactoring actions.

PART I

Summary

37

PART II

How Developers Browse
and Understand

Software Artifacts

38

39

PART II – Experiment A

PART II – Experiment B

Two Empirical Studies Aimed at Understanding

40

PART II – Experiment A
How such documentation is browsed by
developers to perform maintenance
activities?

PART II – Experiment B

Two Empirical Studies Aimed at Understanding

PART II – Experiment A
How such documentation is browsed by
developers to perform maintenance
activities?

PART II – Experiment B
What code elements are often used by
humans when labeling a source code
artifact?

word1
word2

word3
word4

word5
word6

41

Two Empirical Studies Aimed at Understanding

Experiment A: Context

• Object: software artifacts from SMOS, a school automation system
developed by graduate students at the University of Salerno (Italy).

• Subjects: 33 participants.

11 Bachelor Students 18 Master Students 4 PhD Students

G. Bavota, G. Canfora, M. Di Penta, R.Oliveto, Sebastiano Panichella
An Empirical Investigation on Documentation Usage Patterns in Maintenance Tasks.

The 29th International Conference on Software Maintenance (ICSM 2013)
42

Maintenance Tasks

Bug Fixing:

Add a new feature:

Improve existing features:

43

How Much Time did Participants Spend on
Different Kinds of Artifacts?

72%

13%10%
3%2%

44

72%

13%10%
3%2%

Undergraduates students used
Source Code and Javadoc significantly

more than Graduate students

Undergraduate
Students

45

How Much Time did Participants Spend on
Different Kinds of Artifacts?

72%

13%10%
3%2%

Graduate
Students

Graduate students used Class Diagrams
significantly more than Undergraduates

46

How Much Time did Participants Spend on
Different Kinds of Artifacts?

Navigation Patterns Followed By Developers
Before Reaching Source Code

47

S = Sequence Diagram
D = Class Diagram
U = Use Case
J = Javadoc

Simple Navigation
Patterns

(SD)+ = Sequence Diagram before Class Diagram
(US)+ = Use Case before Sequence Diagram
(DS)+ = Class Diagram before Sequence Diagram
U(SD)+ = Use Case before (SD)+

Complex Navigation
Patterns

18%

8%

2%

2%

1%

1%

3%

0%

1%

0%

4%

12%

16%

12%

10%

4%

4%

1%

2%

1%

1%

5%

S

D

(SD)+

(US)+

U(SD)+

(DS)+

J

U

S(US)+

SU(SD)+

Other

Graduate
Undegraduate

S= Sequence Diagram

D= Class Diagram

U= Use Case

J= Javadoc

Most Frequent Navigation Patterns
Before Reaching Source Code

48

18%

8%

2%

2%

1%

1%

3%

0%

1%

0%

4%

12%

16%

12%

10%

4%

4%

1%

2%

1%

1%

5%

0% 2% 4% 6% 8% 10% 12% 14% 16% 18% 20%

S
D

(SD)+
(US)+

U(SD)+
(DS)+

J
U

S(US)+
SU(SD)+

Other

Graduate
Undegraduate

S= Sequence Diagram

D= Class Diagram

U= Use Case

J= Javadoc

49

Most Frequent Navigation Patterns
Before Reaching Source Code

18%

8%

2%

2%

1%

1%

3%

0%

1%

0%

4%

12%

16%

12%

10%

4%

4%

1%

2%

1%

1%

5%

0% 2% 4% 6% 8% 10% 12% 14% 16% 18% 20%

S
D

(SD)+
(US)+

U(SD)+
(DS)+

J
U

S(US)+
SU(SD)+

Other

Graduate
Undegraduate

More experienced
participants use a more
“Integrated approach”

S= Sequence Diagram

D= Class Diagram

U= Use Case

J= Javadoc

50

Most Frequent Navigation Patterns
Before Reaching Source Code

Source
Code

Sequence
Diagram

Javadoc

Transition Graph between Kinds of
Software Artifacts

51

Source
Code

Sequence
Diagram

Javadoc

1) From Source Code
participants in most
cases “go back” to

Sequence and Class
Diagrams

2) From Sequence and
Class Diagrams

participants in most
cases “go back” to

Source Code

3) Starting from a Use
Case, participants go

ahead reading Sequence
Diagrams. Only after,

they reading and writing
Source Code

52

Transition Graph between Kinds of
Software Artifacts

PART II – Experiment B

What Code Elements are Often Used
by Humans When Labeling a Source

Code Artifact?

word1
word2

word3
word4

word5
word6

53

Experiment B: Context

• Object:

eXVantage (industrial test data generation tool)

• Subjects:
17 Bachelor Student CS

…
(Univ. of Molise, second year)

21 Master Student in CS
…

(University of Salerno)

book
hotel
room
reservation
arrival
departure
smoking
double
card
breakfastJava Class

book
hotel
room
reservation
arrival
departure
smoking
double
card
breakfast

book
hotel
room
refund
arrival
check
parking
double
suite
group

confirmation
room
reservation
arrival
departure
date
bed
card
payment
spa

room 3
arrival 3
book 2
hotel 2
reservation 2
departure 2
double 2
card 2

book
hotel
room
reservation
arrival
departure
smoking
double
card
breakfast

book
hotel
room
refund
arrival
check
parking
double
suite
group

confirmation
room
reservation
arrival
departure
date
bed
card
payment
spa

ORACLE: terms selected by at least 50% of the subjects
54

Experiment B: ContextComparison of Different Labeling Techniques

The picture can't be displayed.

Data extracted from signature of methods match very well the mental
model of newcomers when describing source code

Andrea De Lucia, Massimiliano Di Penta, Rocco Oliveto, Annibale Panichella, Sebastiano
Panichella : Labeling Source Code with Information Retrieval Methods: An Empirical Study. EMSE 2014.

55

How Developers Browse and
Understand Software Artifacts

1) Newcomers spend more time to analyze low-level artifacts as compared to high-level artifacts

2) Less experienced newcomers spend a significantly higher proportion of time on source code

3) More experienced newcomers, instead, spend more time on class diagrams

4) Heuristics based on data extracted form signature of methods are able to match very well
the mental model of newcomers when describing source code elements

PART II

Summary

56

PART III

Recommenders

Data Extraction
(Software Repositories)

Empirical Studies

PART I and PART II

Recommenders

PART III

57

Two Recommenders to Support
Project Newcomers

PART III - A)
Suggest Appropriate Mentors to Help Newcomers
in Open Source Projects

PART III – B)
Mining Source Code Descriptions from Developers’
Communication to Improve Newcomers’ Program
Comprehension

58

PART III – A)

Suggest Appropriate Mentors to Help
Newcomers in Open Source Projects

59

Previous Work

Dagenais et al. ICSE 2010

MENTOR

60

• Small Projects: find Mentors
is a trivial problem

• Large Projects: find Mentors
is not a trivial problem

When a Newcomer Joins a Project

.........

61

Motivation

https://community.apache.org/mentoringprogramme.ht
ml

https://community.apache.org/mentoringprogramme.html

62

Identifying Mentors in Software Projects

Characteristics of a Good Mentor

63

Enough ability to help
other people.

Enough expertise
about the topic of interest
for the newcomer.

1) Find Past Successful Mentors

2) Suggest Mentors Having Specific Skills

YODA
(Young and newcOmer Developer Assistant)

64

Approach for Mentors Identification in Open Source Projects

Gerardo Canfora, Massimiliano Di Penta, Rocco Oliveto, Sebastiano Panichella:
Who is Going to Mentor Newcomers in Open Source Projects?

International Symposium on the Foundations of Software Engineering (SIGSOFT FSE 2012)

Source of Inspiration: Arnetminer

Time

When Alice joins
the project

F1: Exchanged emails
YODA

F2: amount of emails
YODA

Time

F3: project age
YODA

Time

F4: newcomer early emails

When Alice was a Student

YODA

When Alice joins
the project

Time

F5: Commits
YODA

Score Computed Aggregating the
Factors in a Weighted Sum

Identify Past Successful Mentors

å
=

5

1i
ii fw

Recommending Mentors

72

Time

Project Developers

73

Time

Project Developers

t

Recommending Mentors

74

Time

Project Developers

t

?

Mentor with
Adequate Skills

Recommending Mentors

75

Time

Past Mentors

t

Inspired to the
Work on Bug
Triaging by J.
Anvik et al.,
TOSEM 2011

Recommending Mentors

76

Time
t

Inspired to the
Work on Bug
Triaging by J.
Anvik et al.,
TOSEM 2011

Recommending Mentors

77

Time
t

Inspired to the
Work on Bug
Triaging by J.
Anvik et al.,
TOSEM 2011

Past Project Developers

Recommending Mentors

78

Time

Past Mentors

t

Inspired to the
Work on Bug
Triaging by J.
Anvik et al.,
TOSEM 2011

Recommending Mentors

79

Time

Past Mentors

t

Inspired to the
Work on Bug
Triaging by J.
Anvik et al.,
TOSEM 2011

Recommending Mentors

80

85%

30%

100%

64%

94%

81%

24%

100%

77%
82%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Apache FreeBSD PostgreSQL Python Samba

Pr
ec

is
io

n

Mentor Recommendations: Precision on Top 1 and Top 2

Top 1

Top 2

Is it Possible to Recommend Mentors
To Project Newcomers?

81

80%

67%

90% 91% 92%

72%

45%

89%
84%

76%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Apache FreeBSD PostgreSQL Python Samba

Pr
ec

is
io

n

Mentor Recommendations: Precision on Top 1 and Top 2

Top 1

Top 2

Results When are Used Both Mails and Issues

82

80%

67%

90% 91% 92%

72%

45%

89%
84%

76%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Apache FreeBSD PostgreSQL Python Samba

Pr
ec

is
io

n

Mentor Recommendations: Precision on Top 1 and Top 2

Top 1

Top 2

YODA Make it Possible
to Recommend Mentors

It is Possible to Recommend Mentors
To Project Newcomers?

87

YODA Tool

http://www.ing.unisannio.it/spanichella/pages/projects.html

YODA Tool

88

89

YODA Tool

90

YODA Tool

91

YODA Tool

92

YODA Tool

93

YODA Tool

94

YODA Tool

95

YODA Tool

PART III – B)

Mining Source Code Descriptions from Developer
Communications to Improve

Newcomers Program Comprehension

96

Effort in Program Comprehension

97

Mining Summaries

We argue that messages exchanged among contributors/developers are a useful source
of information to help understanding source code.

In such situations developers need to infer knowledge from,

the source code itself source code descriptions in external
artifacts.

Newcomer

Can find
Source code description

..
When call the method IndexSplitter.split(File
destDir, String[] segs) from the Lucene cotrib
directory(contrib/misc/src/java/org/apache/luc
ene/index) it creates an index with segments
descriptor file with wrong data. Namely wrong
is the number representing the name of segment
that would be created next in this index.
..

CLASS: IndexSplitter METHOD: split

98

A Five Step-Approach for Mining
Method Descriptions

• Step 1: Downloading emails/bugs reports and tracing
them onto classes

• Step 2: Extracting paragraphs

• Step 3: Tracing paragraphs onto methods

• Step 4: Heuristic based Filtering

• Step 5: Similarity based Filtering

Sebastiano Panichella, Jairo Aponte, Massimiliano Di Penta, Andrian Marcus, Gerardo Canfora:
Mining source code descriptions from developer communications.

International Conference on Program Comprehension (IEEE ICPC 2012) 99

Help Newcomer Program Comprehension with extraction
of summaries of code elements from

Newcomer

Supporting Software Development

Q&A SITE

ISSUE TRACKER

MAILING LIST

100

Approach Precision vs.
Number of Method Covered

We mine useful java methods description from developers discussions

101

Help Newcomer Program Comprehension with extraction
of summaries of code elements from

Newcomer Q&A SITE

ISSUE TRACKER

MAILING LIST

102

Supporting Software Development

StackOverflow

103

• Step 1: Downloading SO discussions relying on
its REST interface and tracing them onto classes

• Step 2: Extracting paragraphs

• Step 3: Tracing paragraphs onto methods
(Discards Paragraphs of discussions with 0 Votes)

• Step 4: Heuristic based Filtering

• Step 5: Similarity based Filtering

CODES:
Approach for Mining Method Descriptions

Carmine Vassallo, Sebastiano Panichella, Massimiliano Di Penta, Gerardo Canfora:
CODES: mining source code descriptions from developers discussions.
BEST TOOL AWARD at the 22nd International Conference on Program Comprehension (IEEE ICPC 2014) 104

CODES Tool:

106http://www.ing.unisannio.it/spanichella/pages/projects.html

CODES Tool :

107

CODES Tool :

108

CODES Tool:

109

CODES Tool:

110

CODES Tool:

111

CODES Tool:

112

CODES Tool:

113

CODES Tool:

114

PART III

Summary

Recommenders

1) YODA make it possible to recommend mentors with a precision higher than 67%

3) Combining Mails and Issues improve recommenders’ performance

2) CODES identifies relevant descriptions with a precision higher than 79%

115

116

Future Work and
Conclusion

Future work…

Building better recommenders for software re-modularization or refactoring
based on social interaction between developers.

Performing a survey asking to developers to validate of the social links
identified by analyzing different communication channels.

We will aim at building recommenders to help newcomer in the choice of appropriate
patterns to navigate software documentation during maintenance tasks.

New
Recommenders

Improve
Existing
Recommenders

Improve the mentor recommender (YODA) by considering factors
able to better capture the technical skills of mentors.

Improve CODES increasing the precision and coverage as high as possible
reducing the percentage of false positives. Include a better classification of

discussion content using of natural language parsers.

117G. Bavota, Sebastiano Panichella, N. Tsantalis, M. Di Penta, R.Oliveto G. Canfora
Recommending Refactorings based on Team Co-Maintenance Patterns.

The 29th International Conference on Automated Software Engineering (ASE 2014)

PART I

PART II

PART III

122

