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Data Extraction

• Versioning Systems
• Mailing Lists
• Issue trackers
• Q&A site (e.g. StackOverflow)
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• Versioning Systems
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Newcomer Learning Path…



Data Extraction

Recommenders

Studies

Newcomer Training Process:
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Data Extraction

Recommenders

Mentoring

Studies
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1) Recommend Mentors

Newcomer Training Process:



Data Extraction

Recommenders
1) Recommend Mentors

Studies

2) Supporting Source Code 
Comprehension and
Re-documentation

2) Analyze Software Artifacts:
c) investigate how newcomers browse artifacts software
d) investigate how newcomers generate source code summaries

Perform Development TasksMentoring
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Newcomer Training Process:



1) Recommend Mentors

Studies

3) Recommend Refactoring

2) Supporting Source Code 
Comprehension and
Re-documentation

Perform Development TasksMentoring

Data Extraction

Recommenders

Team Collaborations
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2) Analyze Software Artifacts:
c) investigate how newcomers browse artifacts software
d) investigate how newcomers generate source code summaries
3) Analyze developers:
c) social activity
d) technical activity

Newcomer Training Process:



1) Recommend Mentors

3) Analyze developers:
c) social activity
d) technical activity

Studies

3) Recommend Refactoring

2) Supporting Source Code 
Comprehension and
Re-documentation

Perform Development TasksMentoring

Data Extraction

Recommenders

Team Collaborations

2) Analyze Software Artifacts:
c) generate source code summaries
d) support maintenance tasks
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Newcomer Training Process:



Thesis Structure

• PART I : analyzing data from software repositories to support team
work.

• rs developers and support the team work.
• PART II : analyzing how developers use software artifacts to help

newcomers in program comprehension task. Si
• on ta
• sk.
• PART  III : developing recommenders to support concretely project 

newcomers
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• PART I: analyzing data from software repositories to support team
work.

• rs developers and support the team work.
• PART II: analyzing how developers use software artifacts to help

newcomers in program comprehension task. Si
• on ta
• sk.
• PART  III : presents recommenders to support concretely project 

newcomers
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Thesis Structure



• PART I: analyzing data from software repositories to support team
work.

• rs developers and support the team work.
• PART II: analyzing how developers use software artifacts to help

newcomers in program comprehension task. Si
• on ta
• sk.
• PART  III: developing recommenders to support concretely project 

newcomers.
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Thesis Structure



PART I

Analysis of Developers’
Communication
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Team 
1

Team 
2

Team 
n

...

New Features
Bugs fixing

...................

...................

...................

Emerging Teams in 
Open Source Projects

https://code.google.com/p/gource/
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Socio-Technical Congruence in 
Developers Social Networks

Bird et al.  - FSE 2008
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How Developers’ Collaborations Networks Identified 
from Different  Sources Differ?

IRC CHAT LOG

VERSIONING SYSTEM

ISSUE TRACKER
MAILING LIST

Sebastiano Panichella, Gabriele Bavota, Massimiliano Di Penta, Gerardo Canfora, Giuliano Antoniol
How Developers’ Collaborations Identified from Different Sources Tell us About Code Changes.
The 30th International Conference on Software Maintenance and Evolution (IEEE ICSME 2014) 20



Example: Hibernate OSS Project
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How Developers’ Collaborations Networks Identified 
from Different  Sources Differ?



Developers Overlap between
Different Sources

Apache Httpd

Apache Lucene

Samba

Hibernate

ISSUE and CHAT 
ISSUE and MAIL 

<
35% 56%

MAIL and CHAT 
MAIL and ISSUE

<
50%

86%
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Overlap of Developers Social Links

ISSUE and CHAT 
ISSUE and MAIL 

<
26% 38%

MAIL and CHAT 
MAIL and ISSUE

<
20%

30%
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Apache Httpd

Apache Lucene

Samba

Hibernate



During an IRC Chat Meeting

PROJECT: Hibernate

“is there a better way? 
dunno like I said this is 
brainstorming and I have 
not given lots of thought to 
these cases”

“but we also need to 
create the attributes

and values in
the entity binding..”
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PROJECT: Hibernate

“is there a better way? 
dunno like I said this is 
brainstorming and I have 
not given lots of thought to 
these cases”

1) Brainstorming

25

“however planning
a pure standalone  

test  suite would 
make things 

easier...”

During an IRC Chat Meeting



PROJECT: Hibernate

“is there a better way? 
dunno like I said this is 
brainstorming and I have 
not given lots of thought to 
these cases”

“however planning
a pure standalone  

test  suite would 
make things 

easier...”

1) Brainstorming
2) Planning

(e.g. Testing
activities)

26

During an IRC Chat Meeting



PROJECT: Hibernate

“okay I think it is a bug 
and I’m going to create 
a jira first”

“however planning
a pure standalone  

test  suite would 
make things 

easier...”

1) Brainstorming
2) Planning

(e.g. Testing
activities)

3) Open an 
Issue
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During an IRC Chat Meeting
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Precision in Recommending Leaders

MAIL ISSUE CHAT

Use Issue, Chat and Mail to
Identify Leaders
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Analysis of the Evolution
of Teams: Why? 

1) To Better Understand the Reasons
Behind the Teams Reorganization

(split/merge of developers teams)

2) Investigate whether Emerging Teams Evolve with
the aim of Working on more Cohesive Groups of Files.
Than Support Re-factoring, Remodulation.

Sebastiano Panichella, Gerardo Canfora, Massimiliano Di Penta, Rocco Oliveto: 
How the evolution of emerging collaborations relates to code changes: an empirical study.
The 22nd International Conference on Program Comprehension (IEEE ICPC 2014)
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By use FUZZY
CLUSTER ALGORITHMS

Teams Identification from Emergent Collaborations 
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Analysis of the Evolution
of Teams: How? 



TEAMS SPLIT

TEAMS MERGE

R1

By use FUZZY
CLUSTER ALGORITHMS

R2
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Analysis of the Evolution
of Teams: How? 



R1

R2

By use FUZZY
CLUSTER ALGORITHMS

Sub-system one Sub-system twoSub-systems two

Sub-Systems where Developers Working on....

Mancoridis et al. 
Modul. Quality

Poshyvanyk et al. 
CCBC

Structure
Persprective

Conceptual
Persprective
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Analysis of the Evolution
of Teams: How? 



Apache HTTP Eclipse JDT Netbeans Samba

Period 
considered 09/1998-03/2012 01/2002-

12/2011
01/2001-
08/2012 01/2000-09/2011

Releases 
Considered

2.0
2.2.0
2.2.4
2.2.12
2.4.1

3.0
3.2
3.4
3.6
4.2

3.4
3.6
5.5
6.9
7.2

2.3
3.0.20
3.0.25
3.5.0
4.0

Systems characteristics: Period of Time and Releases Considered

Case Study

• Goal: analyze data from mailing lists/issue trackers and 
versioning systems

• Purpose: observe the reorganization of the teams
between releases

• Quality focus: better understand the reason behind the 
reorganization of teams 
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Teams Merge in a New Release: 
- in 20%-35% of the 

cases

Teams Split in a New Release: 
- In 15%-35% of the 

cases

How do Emerging Collaborations Change across 
Software Releases?

Teams Disappeared: 
22%-45%

Teams Survived: 
50%-70%

36



Analysis of Developers’
Communication

1) Social network recommenders should not limit their information mining 
a single source.

2) Issue and mail can be used to identify leaders with high accuracy.

3) Social interaction between developers can be used to building better 
recommenders for software re-modularization or refactoring actions.

PART I

Summary

37



PART II

How Developers Browse
and Understand

Software Artifacts

38
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PART II – Experiment A

PART II – Experiment B

Two Empirical Studies Aimed at Understanding
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PART II – Experiment A
How such documentation is browsed by
developers to perform maintenance
activities?

PART II – Experiment B

Two Empirical Studies Aimed at Understanding



PART II – Experiment A
How such documentation is browsed by
developers to perform maintenance
activities?

PART II – Experiment B
What code elements are often used by 
humans when labeling a source code 
artifact?

word1
word2

word3
word4

word5
word6

41

Two Empirical Studies Aimed at Understanding



Experiment A: Context

• Object: software artifacts from SMOS, a school automation system
developed by graduate students at the University of Salerno (Italy).

• Subjects: 33 participants.

11 Bachelor Students 18 Master Students 4 PhD Students

G. Bavota, G. Canfora, M. Di Penta, R.Oliveto, Sebastiano Panichella
An Empirical Investigation on Documentation Usage Patterns in Maintenance Tasks.

The 29th International Conference on Software Maintenance (ICSM 2013)
42



Maintenance Tasks

Bug Fixing:

Add a new feature:

Improve existing features:

43



How Much Time did Participants Spend on
Different Kinds of Artifacts?

72%

13%10%
3%2%

44



72%

13%10%
3%2%

Undergraduates students used 
Source Code and Javadoc significantly 

more than Graduate students

Undergraduate
Students

45

How Much Time did Participants Spend on
Different Kinds of Artifacts?



72%

13%10%
3%2%

Graduate
Students

Graduate students used Class Diagrams
significantly more than Undergraduates
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How Much Time did Participants Spend on
Different Kinds of Artifacts?



Navigation Patterns Followed By Developers 
Before Reaching Source Code

47

S = Sequence Diagram
D = Class Diagram
U = Use Case
J = Javadoc

Simple Navigation
Patterns

(SD)+ =   Sequence Diagram before Class Diagram
(US)+ =   Use Case before Sequence Diagram
(DS)+ = Class Diagram before Sequence Diagram
U(SD)+ = Use Case before (SD)+

Complex Navigation
Patterns



18%

8%

2%

2%

1%

1%

3%

0%

1%

0%

4%

12%

16%

12%

10%

4%

4%

1%

2%

1%

1%

5%

S

D

(SD)+

(US)+

U(SD)+

(DS)+

J

U

S(US)+

SU(SD)+

Other

Graduate
Undegraduate

S= Sequence Diagram

D= Class Diagram

U= Use Case

J= Javadoc

Most Frequent Navigation Patterns
Before Reaching Source Code
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Most Frequent Navigation Patterns
Before Reaching Source Code



18%

8%

2%

2%

1%

1%

3%

0%

1%

0%

4%

12%

16%

12%

10%

4%

4%

1%

2%

1%

1%

5%

0% 2% 4% 6% 8% 10% 12% 14% 16% 18% 20%

S
D

(SD)+
(US)+

U(SD)+
(DS)+

J
U

S(US)+
SU(SD)+

Other

Graduate
Undegraduate

More experienced 
participants use a more 
“Integrated approach”

S= Sequence Diagram

D= Class Diagram

U= Use Case

J= Javadoc
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Most Frequent Navigation Patterns
Before Reaching Source Code



Source 
Code

Sequence 
Diagram

Javadoc

Transition Graph between Kinds of 
Software Artifacts 
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Source 
Code

Sequence 
Diagram

Javadoc

1) From Source Code 
participants in most 
cases “go back” to 

Sequence and Class 
Diagrams

2) From Sequence and 
Class Diagrams 

participants in most 
cases “go back” to 

Source Code

3) Starting from a Use 
Case, participants go 

ahead reading Sequence 
Diagrams. Only after, 

they reading and writing  
Source Code

52

Transition Graph between Kinds of 
Software Artifacts



PART II – Experiment B

What Code Elements are Often Used 
by Humans When Labeling a Source 

Code Artifact?

word1
word2

word3
word4

word5
word6

53



Experiment B: Context

• Object: 

eXVantage (industrial test data generation tool)

• Subjects:
17 Bachelor Student CS

…
(Univ. of Molise, second year)

21 Master Student in CS
…

(University of Salerno)

book
hotel
room
reservation 
arrival
departure
smoking
double
card
breakfastJava Class

book
hotel
room
reservation
arrival
departure
smoking
double
card
breakfast

book
hotel
room
refund
arrival
check
parking
double
suite
group

confirmation
room
reservation
arrival
departure
date
bed
card
payment
spa

room 3
arrival 3
book 2
hotel 2
reservation 2
departure 2
double 2
card 2

book
hotel
room
reservation
arrival
departure
smoking
double
card
breakfast

book
hotel
room
refund
arrival
check
parking
double
suite
group

confirmation
room
reservation
arrival
departure
date
bed
card
payment
spa

ORACLE: terms selected by at least 50% of the subjects
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Experiment B: ContextComparison of Different Labeling Techniques

The picture can't be displayed.

Data extracted from signature of methods match very well the mental 
model of newcomers when describing source code

Andrea De Lucia, Massimiliano Di Penta, Rocco Oliveto, Annibale Panichella, Sebastiano 
Panichella : Labeling Source Code with Information Retrieval Methods: An Empirical Study. EMSE 2014.
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How Developers Browse and
Understand Software Artifacts

1) Newcomers spend more time to analyze low-level artifacts as compared to high-level artifacts

2) Less experienced newcomers spend a significantly higher proportion of time on source code

3) More experienced newcomers, instead, spend more time on class diagrams

4) Heuristics based on data extracted form signature of methods are able to match very well
the mental model of newcomers when describing source code elements

PART II

Summary

56



PART III

Recommenders

Data Extraction
(Software Repositories)

Empirical Studies

PART I  and   PART II

Recommenders

PART III
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Two Recommenders to Support
Project Newcomers

PART III - A)
Suggest Appropriate Mentors to Help Newcomers 
in Open Source Projects

PART III – B)
Mining Source Code Descriptions from Developers’ 
Communication to Improve Newcomers’ Program 
Comprehension

58



PART III – A)

Suggest Appropriate Mentors to Help 
Newcomers in Open Source Projects
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Previous Work

Dagenais et al. ICSE 2010

MENTOR

60



• Small Projects: find Mentors
is a trivial problem

• Large Projects: find Mentors
is not a trivial problem

When a Newcomer Joins a Project

.........

61



Motivation

https://community.apache.org/mentoringprogramme.ht
ml

https://community.apache.org/mentoringprogramme.html

62

Identifying Mentors in Software Projects



Characteristics of a Good Mentor

63

Enough ability to help
other people.

Enough expertise
about the topic of interest  
for the newcomer.



1)  Find Past Successful  Mentors 

2)  Suggest Mentors Having   Specific Skills 

YODA 
(Young and newcOmer Developer Assistant)

64

Approach for Mentors Identification in Open Source Projects

Gerardo Canfora, Massimiliano Di Penta, Rocco Oliveto, Sebastiano Panichella: 
Who is Going to Mentor Newcomers in Open Source Projects? 

International Symposium on the Foundations of Software Engineering (SIGSOFT FSE 2012)



Source of Inspiration: Arnetminer



Time

When Alice joins
the project

F1: Exchanged emails
YODA



F2: amount of emails
YODA



Time

F3: project age
YODA



Time

F4: newcomer early emails

When Alice was a Student

YODA



When Alice joins
the project

Time

F5: Commits
YODA



Score Computed Aggregating the 
Factors in a Weighted Sum

Identify Past Successful Mentors

å
=

5

1i
ii fw



Recommending Mentors

72

Time

Project Developers
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Time

Project Developers

t

Recommending Mentors
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Time

Project Developers

t

?

Mentor with 
Adequate Skills

Recommending Mentors
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Time

Past Mentors

t

Inspired to the
Work on Bug 
Triaging by J. 
Anvik et al.,
TOSEM 2011 

Recommending Mentors
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Time
t

Inspired to the
Work on Bug 
Triaging by J. 
Anvik et al.,
TOSEM 2011 

Recommending Mentors
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Time
t

Inspired to the
Work on Bug 
Triaging by J. 
Anvik et al.,
TOSEM 2011 

Past Project Developers

Recommending Mentors
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Time

Past Mentors
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Inspired to the
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Triaging by J. 
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Time

Past Mentors

t

Inspired to the
Work on Bug 
Triaging by J. 
Anvik et al.,
TOSEM 2011 

Recommending Mentors
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YODA Tool

http://www.ing.unisannio.it/spanichella/pages/projects.html



YODA Tool
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YODA Tool
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YODA Tool
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YODA Tool
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YODA Tool
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YODA Tool
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YODA Tool



95

YODA Tool



PART III – B)

Mining Source Code Descriptions from Developer 
Communications to Improve

Newcomers Program Comprehension
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Effort in Program Comprehension
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Mining Summaries

We argue that messages exchanged among contributors/developers are a useful source
of information to help understanding source code.

In such situations developers need to infer knowledge from,  

the source code itself source code descriptions in external
artifacts.

Newcomer

Can find
Source code description

..................................................
When call the method IndexSplitter.split(File 
destDir, String[] segs) from the Lucene cotrib
directory(contrib/misc/src/java/org/apache/luc
ene/index) it creates an index with segments 
descriptor file with wrong data. Namely wrong 
is the number representing the name of segment 
that would be created next in this index. 
..................................................

CLASS: IndexSplitter METHOD: split

98



A Five Step-Approach for Mining
Method Descriptions

• Step 1: Downloading emails/bugs reports and tracing
them onto classes

• Step 2: Extracting paragraphs

• Step 3: Tracing paragraphs onto methods

• Step 4: Heuristic based Filtering

• Step 5: Similarity based Filtering

Sebastiano Panichella, Jairo Aponte, Massimiliano Di Penta, Andrian Marcus, Gerardo Canfora:
Mining source code descriptions from developer communications. 

International Conference on Program Comprehension (IEEE ICPC 2012) 99



Help Newcomer Program Comprehension with extraction
of summaries of code elements from

Newcomer

Supporting Software Development

Q&A SITE

ISSUE TRACKER

MAILING LIST

100



Approach Precision vs. 
Number of Method Covered

We mine useful java methods description from developers discussions

101



Help Newcomer Program Comprehension with extraction
of summaries of code elements from

Newcomer Q&A SITE

ISSUE TRACKER

MAILING LIST

102

Supporting Software Development



StackOverflow

103



• Step 1: Downloading SO discussions relying on
its REST interface and tracing them onto classes

• Step 2: Extracting paragraphs

• Step 3: Tracing paragraphs onto methods
( Discards Paragraphs of discussions with 0 Votes)

• Step 4: Heuristic based Filtering

• Step 5: Similarity based Filtering

CODES:
Approach for Mining Method Descriptions

Carmine Vassallo, Sebastiano Panichella, Massimiliano Di Penta, Gerardo Canfora:
CODES: mining source code descriptions from developers discussions.
BEST TOOL AWARD at the 22nd International Conference on Program Comprehension (IEEE ICPC 2014) 104



CODES Tool:

106http://www.ing.unisannio.it/spanichella/pages/projects.html



CODES Tool :
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CODES Tool :
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CODES Tool:
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CODES Tool:
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CODES Tool:
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CODES Tool:
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CODES Tool:
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CODES Tool:
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PART III

Summary

Recommenders

1) YODA make it possible to recommend mentors with a precision higher than 67%

3) Combining Mails and Issues improve recommenders’ performance

2) CODES identifies relevant descriptions with a precision higher than 79%

115
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Future Work and
Conclusion



Future work…

Building better recommenders for software  re-modularization or refactoring
based on social interaction between developers.

Performing a survey asking to developers to validate of the social links
identified by analyzing different communication channels.

We will aim at building recommenders to help newcomer in the choice of appropriate 
patterns to navigate software documentation during maintenance tasks.

New 
Recommenders

Improve
Existing
Recommenders

Improve the mentor recommender (YODA) by considering factors
able to better capture the technical skills of mentors.

Improve CODES increasing the precision and coverage as high as possible
reducing the percentage of false positives. Include a better classification of 

discussion content using of natural language parsers.

117G. Bavota, Sebastiano Panichella, N. Tsantalis, M. Di Penta, R.Oliveto G. Canfora
Recommending Refactorings based on Team Co-Maintenance Patterns.

The 29th International Conference on Automated Software Engineering (ASE 2014)
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